Validation of Pin-Resolved Reaction Rates, Kinetics Parameters, and Linear Source MOC in MPACT

2020 ◽  
Vol 195 (1) ◽  
pp. 50-68
Author(s):  
Yuxuan Liu ◽  
Kyle Vaughn ◽  
Brendan Kochunas ◽  
Thomas Downar
Author(s):  
Cheol Ho Pyeon

AbstractAt the Kyoto University Critical Assembly (KUCA), the accelerator-driven system (ADS) is composed of a solid-moderated and solid-reflected core (A-core) and a pulsed-neutron generator (14 MeV neutrons) or the fixed-filed alternating gradient (FFAG) accelerator (100 MeV protons). At KUCA, two external neutron sources, including 14 MeV neutrons and 100 MeV protons, are separately injected into the A-core, and employed for carrying out the ADS experiments. With the combined use of the A-core and two external neutron sources, basic and feasibility studies of ADS have been engaged in the examination of neutronics of ADS, through the measurements of statics and kinetics parameters of reactor physics, including subcritical multiplication factor, subcriticality, prompt neutron decay constant, effective delayed neutron fraction, neutron spectrum, and reaction rates.


2016 ◽  
Author(s):  
Gassan Nazzal

Abstract.In this work, we attempt to determine the assumptions of each case of the QSSA. We came to the conclusion that for an enzyme with average kinetics parameters the REA is a good approximation to derive the rate equation and the Km value tends to equal the dissociation constant Kd. The active site classifies the population of the substrate into two energy states, the ground state, and the transition state. The ratio Km/Kd is equal to the partition function of the assumed two-state-system. For the average enzyme, the partition function of the transition tends to equal 1 thus the majority of the substrate molecules are in the ground state and the assumption kcat << k−1 is valid hence Km ≈ Kd. In contrast, when the enzyme is diffusion controlled, the Km value is equal to the productive dissociation rate kcat/k1. We have also redefined the Km value as the equivalence point of the reaction rates, namely, the effective diffusion rate and the maximal catalytic rate, which reflects more clearly the transition from the bimolecular reaction to the unimolecular reaction in the saturation curve.


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


2002 ◽  
Vol 716 ◽  
Author(s):  
You-Seok Suh ◽  
Greg Heuss ◽  
Jae-Hoon Lee ◽  
Veena Misra

AbstractIn this work, we report the effects of nitrogen on electrical and structural properties in TaSixNy /SiO2/p-Si MOS capacitors. TaSixNy films with various compositions were deposited by reactive sputtering of TaSi2 or by co-sputtering of Ta and Si targets in argon and nitrogen ambient. TaSixNy films were characterized by Rutherford backscattering spectroscopy and Auger electron spectroscopy. It was found that the workfunction of TaSixNy (Si>Ta) with varying N contents ranges from 4.2 to 4.3 eV. Cross-sectional transmission electron microscopy shows no indication of interfacial reaction or crystallization in TaSixNy on SiO2, resulting in no significant increase of leakage current in the capacitor during annealing. It is believed that nitrogen retards reaction rates and improves the chemical-thermal stability of the gate-dielectric interface and oxygen diffusion barrier properties.


2020 ◽  
Author(s):  
Josh MacMillan ◽  
Katherine Marczenko ◽  
Erin Johnson ◽  
Saurabh Chitnis

The addition of Sb-H bonds to alkynes was reported recently as a new hydroelementation reaction that exclusively yields anti-Markovnikov <i>Z</i>-olefins from terminal acetylenes. We examine four possible mechanisms that are consistent with the observed stereochemical and regiochemical outcomes. A comprehensive analysis of solvent, substituent, isotope, additive, and temperature effects on hydrostibination reaction rates definitively refutes three ionic mechanisms involving closed-shell charged intermediates. Instead the data support a fourth pathway featuring neutral radical Sb<sup>II</sup> and Sb<sup>III</sup> intermediates. Density Functional Theory (DFT) calculations are consistent this model, predicting an activation barrier that is within 1 kcal mol<sup>-1</sup> of the experimental value (Eyring analysis) and a rate limiting step that is congruent with experimental kinetic isotope effect. We therefore conclude that hydrostibination of arylacetylenes is initiated by the generation of stibinyl radicals, which then participate in a cycle featuring Sb<sup>II</sup> and Sb<sup>III</sup> intermediates to yield the observed <i>Z</i>-olefins as products. This mechanistic understanding will enable rational evolution of hydrostibination as a methodology for accessing challenging products such as <i>E</i>-olefins.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


Sign in / Sign up

Export Citation Format

Share Document