SEM analysis of the change in the reaction rates with deposit structures in the copper-iron cementation system

Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.

Author(s):  
V. Annamalai

Iron has been the major source of the precipitant metal in the copper cementation process. Aluminum, due to its abundant availability in the form of beverage cans, has been used successfully in the process in laboratory experiments1. In a recent study of the cementation of the Cu2+/pure A1 system2, it was found that the reaction rates followed a distinct two-step rate mechanism. This paper presents a physical explanation of the two-step rate mechanism on the basis of the structural characteristics of the copper deposits.A specially designed cementation cell along with aluminum (99.99% pure) rotating discs was used in this study2. Ultrasonic experiments were conducted using an 80 watt Bransonic 12 ultrasonic cleaner. Copper deposits were examined in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25 KV in the secondary electron emission mode.In most of the experiments, two distinct kinetic regions were observed, namely an initial slow rate followed by a final enhanced rate.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 770
Author(s):  
Vivien Daligaux ◽  
Romain Richard ◽  
Marie-Hélène Manero

In catalytic industrial processes, coke deposition remains a major drawback for solid catalysts use as it causes catalyst deactivation. Extensive study of this phenomenon over the last decades has provided a better understanding of coke behavior in a great number of processes. Among them, catalytic pyrolysis of plastics, which has been identified as a promising process for waste revalorization, is given particular attention in this paper. Combined economic and environmental concerns rose the necessity to restore catalytic activity by recovering deactivated catalysts. Consequently, various regeneration processes have been investigated over the years and development of an efficient and sustainable process remains an industrial challenge. Coke removal can be achieved via several chemical processes, such as oxidation, gasification, and hydrogenation. This review focuses on oxidative treatments for catalyst regeneration, covering the current progress of oxidation treatments and presenting advantages and drawbacks for each method. Molecular oxidation with oxygen and ozone, as well as advanced oxidation processes with the formation of OH radicals, are detailed to provide a deep understanding of the mechanisms and kinetics involved (direct and indirect oxidation, reaction rates and selectivity, diffusion, and mass transfer). Finally, this paper summarizes all relevant analytical techniques that can be used to characterize deactivated and regenerated solid catalysts: XRD, N2 adsorption-desorption, SEM, NH3-TPD, elemental analysis, IR. Analytical techniques are classified according to the type of information they provide, such as structural characteristics, elemental composition, or chemical properties. In function of the investigated property, this overall tool is useful and easy-to-use to determine the adequate analysis.


Author(s):  
N. J. Zaluzec

The ultimate sensitivity of microchemical analysis using x-ray emission rests in selecting those experimental conditions which will maximize the measured peak-to-background (P/B) ratio. This paper presents the results of calculations aimed at determining the influence of incident beam energy, detector/specimen geometry and specimen composition on the P/B ratio for ideally thin samples (i.e., the effects of scattering and absorption are considered negligible). As such it is assumed that the complications resulting from system peaks, bremsstrahlung fluorescence, electron tails and specimen contamination have been eliminated and that one needs only to consider the physics of the generation/emission process.The number of characteristic x-ray photons (Ip) emitted from a thin foil of thickness dt into the solid angle dΩ is given by the well-known equation


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Marc E. Segovia ◽  
Martina Kieninger ◽  
Oscar Ventura ◽  
...  

This work reports density functional and composite model chemistry calculations performed on the reactions of toluene with the hydroxyl radical. Both experimentally observed H-abstraction from the methyl group and possible additions to the phenyl ring were investigated. Reaction enthalpies and heights of the barriers suggest that H-abstraction is more favorable than ●OH addition to the ring. The calculated reaction rates at room temperature and the radical-intermediate product fractions support this view. This is somehow contradictory with the fact that, under most experimental conditions, cresols are observed in a larger concentration than benzaldehyde. Since the accepted mechanism for benzaldehyde formation involves H-abstraction, a contradiction arises that begs for an explanation. In this first part of our work we give the evidences that support the preference of hydrogen abstraction over ●OH addition and suggest an alternative mechanism which shows that cresols can actually arise also from the former reaction and not only from the latter.


2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Marc E. Segovia ◽  
Martina Kieninger ◽  
Oscar Ventura ◽  
...  

This work reports density functional and composite model chemistry calculations performed on the reactions of toluene with the hydroxyl radical. Both experimentally observed H-abstraction from the methyl group and possible additions to the phenyl ring were investigated. Reaction enthalpies and heights of the barriers suggest that H-abstraction is more favorable than ●OH addition to the ring. The calculated reaction rates at room temperature and the radical-intermediate product fractions support this view. This is somehow contradictory with the fact that, under most experimental conditions, cresols are observed in a larger concentration than benzaldehyde. Since the accepted mechanism for benzaldehyde formation involves H-abstraction, a contradiction arises that begs for an explanation. In this first part of our work we give the evidences that support the preference of hydrogen abstraction over ●OH addition and suggest an alternative mechanism which shows that cresols can actually arise also from the former reaction and not only from the latter.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1043
Author(s):  
Christabel Ebuzoeme ◽  
Imoh Etim ◽  
Autumn Ikimi ◽  
Jamie Song ◽  
Ting Du ◽  
...  

Glucuronides hydrolysis by intestinal microbial β-Glucuronidases (GUS) is an important procedure for many endogenous and exogenous compounds. The purpose of this study is to determine the impact of experimental conditions on glucuronide hydrolysis by intestinal microbial GUS. Standard probe 4-Nitrophenyl β-D-glucopyranoside (pNPG) and a natural glucuronide wogonoside were used as the model compounds. Feces collection time, buffer conditions, interindividual, and species variations were evaluated by incubating the substrates with enzymes. The relative reaction activity of pNPG, reaction rates, and reaction kinetics for wogonoside were calculated. Fresh feces showed the highest hydrolysis activities. Sonication increased total protein yield during enzyme preparation. The pH of the reaction system increased the activity in 0.69–1.32-fold, 2.9–12.9-fold, and 0.28–1.56-fold for mouse, rat, and human at three different concentrations of wogonoside, respectively. The Vmax for wogonoside hydrolysis was 2.37 ± 0.06, 4.48 ± 0.11, and 5.17 ± 0.16 μmol/min/mg and Km was 6.51 ± 0.71, 3.04 ± 0.34, and 0.34 ± 0.047 μM for mouse, rat, and human, respectively. The inter-individual difference was significant (4–6-fold) using inbred rats as the model animal. Fresh feces should be used to avoid activity loss and sonication should be utilized in enzyme preparation to increase hydrolysis activity. The buffer pH should be appropriate according to the species. Inter-individual and species variations were significant.


2021 ◽  
Vol 7 ◽  
Author(s):  
Cody Ising ◽  
Pedro Rodriguez ◽  
Daniel Lopez ◽  
Jeffrey Santner

In combustion chemistry experiments, reaction rates are often extracted from complex experiments using detailed models. To aid in this process, experiments are performed such that measurable quantities, such as species concentrations, flame speed, and ignition delay, are sensitive to reaction rates of interest. In this work, a systematic method for determining such sensitized experimental conditions is demonstrated. An open-source python script was created using the Cantera module to simulate thousands of 0D and hundreds of 1D combustion chemistry experiments in parallel across a broad, user-defined range of mixture conditions. The results of the simulation are post-processed to normalize and compare sensitivity values among reactions and across initial conditions for time-varying and steady-state simulations, in order to determine the “most useful” experimental conditions. This software can be utilized by researchers as a fast, user-friendly screening tool to determine the thermodynamic and mixture parameters for an experimental campaign. We demonstrate this software through two case studies comparing results of the 0D script against a shock tube experiment and results of the 1D script against a spherical flame experiment. In the shock tube case study we present mixture conditions compared to those used in the literature to study H + O2 (+M)→HO2(+M). In the flame case study, we present mixture conditions compared to those in the literature to study formyl radical (HCO) decomposition and oxidation reactions. The systematically determined experimental conditions identified in the present work are similar to the conditions chosen in the literature.


2000 ◽  
Vol 65 (12) ◽  
pp. 839-846
Author(s):  
Jasmina Nikolic ◽  
Gordana Uscumlic ◽  
Vera Krstic

Rate constants for the reaction of diazodiphenylmethane with cyclohex-1-enylcarboxylic acid and 2-methylcyclohex-1-enylcarboxylic acid were determined in nine aprotic solvents, as well as in seven protic solvents, at 30?C using the appropriate UV-spectroscopic method. In protic solvents the unsubsituted acid displayed higher reaction rates than the methyl-substituted one. The results in aprotic solvents showed quite the opposite, and the reaction rates were considerably lower. In order to explain the obtained results through solvent effects, reaction rate constants (k) of the examined acids were correlated using the total solvatochromic equation of the form: log k=logk0+s?*+a?+b?, where ?* is the measure of the solvent polarity, a represents the scale of the solvent hydrogen bond donor acidities (HBD) and b represents the scale of the solvent hydrogen bond acceptor basicities (HBA). The correlation of the kinetic data were carried out by means of multiple linear regression analysis and the opposite effects of aprotic solvents, as well as the difference in the influence of protic and aprotic solvents on the reaction of the two examined acids with DDM were discussed. The results presented in this paper for cyclohex-1-enylcarboxylic and 2-methylcyclohex-1-enylcarboxylic acids were compared with the kinetic data for benzoic acid obtained in the same chemical reaction, under the same experimental conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ameerunisha Begum ◽  
Moumita Bose ◽  
Golam Moula

AbstractCurrent research on catalysts for proton exchange membrane fuel cells (PEMFC) is based on obtaining higher catalytic activity than platinum particle catalysts on porous carbon. In search of a more sustainable catalyst other than platinum for the catalytic conversion of water to hydrogen gas, a series of nanoparticles of transition metals viz., Rh, Co, Fe, Pt and their composites with functionalized graphene such as RhNPs@f-graphene, CoNPs@f-graphene, PtNPs@f-graphene were synthesized and characterized by SEM and TEM techniques. The SEM analysis indicates that the texture of RhNPs@f-graphene resemble the dispersion of water droplets on lotus leaf. TEM analysis indicates that RhNPs of <10 nm diameter are dispersed on the surface of f-graphene. The air-stable NPs and nanocomposites were used as electrocatalyts for conversion of acidic water to hydrogen gas. The composite RhNPs@f-graphene catalyses hydrogen gas evolution from water containing p-toluene sulphonic acid (p-TsOH) at an onset reduction potential, Ep, −0.117 V which is less than that of PtNPs@f-graphene (Ep, −0.380 V) under identical experimental conditions whereas the onset potential of CoNPs@f-graphene was at Ep, −0.97 V and the FeNPs@f-graphene displayed onset potential at Ep, −1.58 V. The pure rhodium nanoparticles, RhNPs also electrocatalyse at Ep, −0.186 V compared with that of PtNPs at Ep, −0.36 V and that of CoNPs at Ep, −0.98 V. The electrocatalytic experiments also indicate that the RhNPs and RhNPs@f-graphene are stable, durable and they can be recycled in several catalytic experiments after washing with water and drying. The results indicate that RhNPs and RhNPs@f-graphene are better nanoelectrocatalysts than PtNPs and the reduction potentials were much higher in other transition metal nanoparticles. The mechanism could involve a hydridic species, Rh-H− followed by interaction with protons to form hydrogen gas.


Sign in / Sign up

Export Citation Format

Share Document