Novel advanced copper-silver materials produced from recycled dendritic copper powders using electroless coating and hot pressing

2022 ◽  
pp. 1-13
Author(s):  
Temel Varol ◽  
Onur Güler ◽  
Serhatcan Berk Akçay ◽  
Hüseyin Can Aksa
2007 ◽  
Vol 280-283 ◽  
pp. 1433-1436
Author(s):  
Chang Qing Hong ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Qiang Xu ◽  
Xiao Dong He

TiB2 -Cu cermet with the relative density of 92% was produced from titanium, boron and copper powders by combustion synthesis and subsequently pseudo hot isostatic pressing. To improve its mechanical and thermal physical properties, the two-time hot pressing sintering test was carried out at 1050°, 1090° and 1150°C respectively. The deformation behavior and variation of micro- structure and mechanical properties were investigated in detail. The results showed that the relative density and the flexural strength increase remarkably after two-time hot pressing. The relative density reaches 605.5MPa and the flexural strength reaches 96% when the two-time pressing temperature is at 1090°C, and the values increase 12% and 6% compared to that before two-time pressing.


Author(s):  
T. E. Mitchell ◽  
P. B. Desch ◽  
R. B. Schwarz

Al3Zr has the highest melting temperature (1580°C) among the tri-aluminide intermetal1ics. When prepared by casting, Al3Zr forms in the tetragonal DO23 structure but by rapid quenching or by mechanical alloying (MA) it can also be prepared in the metastable cubic L12 structure. The L12 structure can be stabilized to at least 1300°C by the addition of copper and other elements. We report a TEM study of the microstructure of bulk Al5CuZr2 prepared by hot pressing mechanically alloyed powder.MA was performed in a Spex 800 mixer using a hardened steel container and balls and adding hexane as a surfactant. Between 1.4 and 2.4 wt.% of the hexane decomposed during MA and was incorporated into the alloy. The mechanically alloyed powders were degassed in vacuum at 900°C. They were compacted in a ram press at 900°C into fully dense samples having Vickers hardness of 1025. TEM specimens were prepared by mechanical grinding followed by ion milling at 120 K. TEM was performed on a Philips CM30 at 300kV.


1998 ◽  
Vol 77 (4) ◽  
pp. 1033-1037 ◽  
Author(s):  
Y. Park, S. A. Song H., G. Kim

2014 ◽  
Vol 56 (3) ◽  
pp. 213-217 ◽  
Author(s):  
Serkan Islak ◽  
Durmuş Kır ◽  
Halis Çelik

Sign in / Sign up

Export Citation Format

Share Document