Soil carbon sequestration on a maize-mung bean field with rice straw mulch, no-tillage, and chemical fertilizer application in Thailand from 2011 to 2015

Author(s):  
Naruo Matsumoto ◽  
Wanida Nobuntou ◽  
Nongluck Punlai ◽  
Tomohide Sugino ◽  
Praison Rujikun ◽  
...  
2021 ◽  
Author(s):  
Simone Pesce ◽  
Enrico Balugani ◽  
Josè Miguel De Paz ◽  
Fernado Visconti ◽  
Carlotta Carlini ◽  
...  

<p>In the context of sustainable development, agriculture holds a promising potential for CO2 sequestration and, accordingly, for the mitigation of climate change. This potential capacity can be developed through the adoption of less conventional farming techniques, such as the mulching of the topsoil with agricultural by-products where they are available, e.g., rice straw in the semiarid Valencia province (Eastern Spain). In general, the use of straw as mulching material has been found beneficial for soil quality as it reduces temperature excursions both daily and yearly, increases soil water content overall, and increases the activity of microbes. Moreover, it encourages the binding of organic matter and mineral particles into macro and micro aggregates, leading to: enhancement of the aggregate stability, restoration of stable C, and increase in the soil organic carbon (SOC) content and, thus, soil carbon sequestration. SOC dynamic models, like the widely used RothC, are useful to assess the soil carbon sequestration potential of different agricultural practices and to project their effects on the long term. However, there is a lack of studies focusing on the modelling of straw mulch effects on SOC dynamics.</p><p>Our work aimed at modelling the rice straw mulch degradation and its effects on the SOC dynamics in two citrus orchards, as observed during a short-term field experiment (2 years). In the orchards, the straw mulch was applied to the inter-rows once a year, and its effects on soil water content, temperature, respiration rate, and SOC contents (amidst other chemical and biological parameters) were compared with bare soil and natural grass formation</p><p>The RothC carbon dynamics model was modified by including the straw mulch effects on SOC dynamics as observed on the field and, additionally, by modelling the soil water dynamics with the HYDRUS1D model. The SOC pools for the RothC simulations were assessed following the fractionation of Zimmerman et al. (2007). The model parameters were calibrated with the soil respiration data.</p><p>The straw mulch model can be used for the estimation of the effects of the rice straw on the SOC in the short term. By changing the soil, climatic and agricultural practices inputs, the model can be applied to different fields in semiarid conditions, allowing the assessment of the soil carbon sequestration potential of different agricultural practices. However, the model still needs to be verified on long term field studies to deliver reliable long term sequestration projections.</p>


2016 ◽  
Vol 163 ◽  
pp. 152-159 ◽  
Author(s):  
Elliott Ronald Dossou-Yovo ◽  
Nicolas Brüggemann ◽  
Edward Ampofo ◽  
Attanda Mouinou Igue ◽  
Naab Jesse ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5983
Author(s):  
Shaofei Jin

China consumes more than one-third of the world’s nitrogen (N) fertilizer, and an increasing amount of N fertilizer has been applied over the past decades. Although N fertilization can increase the carbon sequestration potentials of cropland in China, the quantitative effects of different N fertilizer application levels on soil carbon changes have not been evaluated. Therefore, a 12-year cultivation experiment was conducted under three N fertilizer application levels (no N fertilizer input, the recommended N fertilizer input after soil testing, and the estimated additional fertilizer input) to estimate the effect of N addition on soil carbon changes in the root layer (0–80 cm) and non-root layer (80–200 cm) using a within-study meta-analysis method. The results showed significant declines in the soil inorganic carbon (SIC) in the root layers and significant growth in the SIC in the non-root layers under N fertilizer input. The soil organic carbon (SOC) in the root layers and the non-root layer significantly decreased under all the treatments. In addition, the recommended N fertilizer application level significantly increased the SOC and soil total carbon stocks compared with the future N fertilizer application level and no N input, while the future N fertilization significantly decreased the SIC and soil total carbon compared with no N input. The results suggest that N fertilization can rearrange the soil carbon distribution over the entire soil profile, and the recommended N fertilization rather than excess N input can increase the soil carbon stock, which suggests that the national soil testing program in China can improve the soil carbon sequestration potential.


2006 ◽  
Vol 35 (4) ◽  
pp. 1364-1373 ◽  
Author(s):  
Dustin L. Pendell ◽  
Jeffery R. Williams ◽  
Charles W. Rice ◽  
Richard G. Nelson ◽  
Scott B. Boyles

Sign in / Sign up

Export Citation Format

Share Document