Dynamic effect to gyromagnetic factors of the compressed tetragonal molybdenum (V) tetrahedral center in the light-irradiated lead molybdate crystal

2021 ◽  
pp. 1-7
Author(s):  
Yang Mei ◽  
Chang Liu ◽  
Wang Fang
Author(s):  
Y.D. Yu ◽  
R. Guan ◽  
K.H. Kuo ◽  
H. Hashimoto

We have indicated that the lighter atoms such as oxygen in Cu2O can be observed at the specimen with optimal thicknesses based on the dynamic effect of electron diffraction(1). This rule in principle should hold good for the imaging of other lighter atoms such as sulphur atom in Cu2S. However, this point of view needs further experimentally confirm because up to now only oxygen atoms have been observed in Cu2O and a series of new suboxides of copper and nickel (2). In addition, the sulphur atom is much heavier than oxygen one though is still lighter than copper atom. In the present report we provide such a confirmation.The crystallites of Cu2S shown in Fig.l were obtained by sulfurizing at 300°C of the copper thin film which was sealed in a glass tube with mg sulphur left on the tube wall in a vacuum of about 10-2 Pa. The energy dispersive spectrocscopy analysis indicated that they are the sulfides and the electron diffraction analysis indicated they have anti-fluorite structure.


2017 ◽  
Vol 23 (1) ◽  
pp. 36-49
Author(s):  
V.A. Shuvalov ◽  
◽  
N.B. Gorev ◽  
N.A. Tokmak ◽  
N.I. Pismennyi ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 206-210
Author(s):  
Cheng-Xin YANG ◽  
Dong-Yang LIN ◽  
Yong JIANG ◽  
Xiao-Xiang WANG

2020 ◽  
Vol 17 ◽  
Author(s):  
Patrick Appiah-Kubi ◽  
Fisayo Andrew Olotu ◽  
Mahmoud E. S. Soliman

Introduction: Blocking Human Immunodeficiency Virus type 1 (HIV-1) entry via C-C chemokine receptor 5 (CCR5) inhibition has remained an essential strategy in HIV drug discovery. This underlies the development of CCR5 blockers, such as Maraviroc, which, however, elicits undesirable side effects despite its potency. Background: Recent lead optimization efforts led to the discovery of novel 1-heteroaryl-1,3-propanediamine derivatives; Compd-21 and -34, which were ~3 times more potent than Maraviroc, with improved pharmacokinetics. However, atomistic molecular interaction mechanism of how slight structural variance between these inhibitors significantly affects their binding profiles have not been elucidated. Method: This study employed explicit lipid bilayer molecular dynamics (MD) simulations, and advance analyses to explore these inhibitory discrepancies. Results: Findings revealed that the thiophene moiety substitution common to Compd-21 and -34 enhanced their CCR5- inhibitory activities due to complementary high-affinity interactions with Trp862.60, Tyr1083.32, Tyr2516.51, Glu2837.39. These cumulatively accounted for their ΔGbind which were higher than Maraviroc. Binding dynamics further revealed that the compounds mediated direct competitive inhibition at CCR5 by blocking the gp120 V3 loop. Furthermore, constituent tropane and triazole moieties in the compounds commonly engaged in interactions with Glu2837.39 and Trp862.60, respectively. Structural analyses also revealed that both Compd-21 and -34 elicited distinct internal dynamic effect on CCR5 relative to Maraviroc. Conclusion: Structural modifications at the thiophene substituent and the addition of new functional groups to the triazole ring may enhance inhibitor competition with gp120 V3-loop. Findings herein highlighted would contribute to future structure-based design of inhibitors of HIV-1 CCR5 with improved potencies.


2017 ◽  
Vol 23 (2) ◽  
pp. 195-212 ◽  
Author(s):  
Soonyoun Park ◽  
Sae Woon Park ◽  
Heeho Kim ◽  
Sunhae Lee

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marco Baity-Jesi ◽  
Enrico Calore ◽  
Andrés Cruz ◽  
Luis Antonio Fernandez ◽  
José Miguel Gil-Narvion ◽  
...  

AbstractExperiments featuring non-equilibrium glassy dynamics under temperature changes still await interpretation. There is a widespread feeling that temperature chaos (an extreme sensitivity of the glass to temperature changes) should play a major role but, up to now, this phenomenon has been investigated solely under equilibrium conditions. In fact, the very existence of a chaotic effect in the non-equilibrium dynamics is yet to be established. In this article, we tackle this problem through a large simulation of the 3D Edwards-Anderson model, carried out on the Janus II supercomputer. We find a dynamic effect that closely parallels equilibrium temperature chaos. This dynamic temperature-chaos effect is spatially heterogeneous to a large degree and turns out to be controlled by the spin-glass coherence length ξ. Indeed, an emerging length-scale ξ* rules the crossover from weak (at ξ ≪ ξ*) to strong chaos (ξ ≫ ξ*). Extrapolations of ξ* to relevant experimental conditions are provided.


Sign in / Sign up

Export Citation Format

Share Document