scholarly journals Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

2017 ◽  
Vol 55 (9) ◽  
pp. 1405-1429 ◽  
Author(s):  
Van Tan Vu ◽  
Olivier Sename ◽  
Luc Dugard ◽  
Peter Gaspar
2016 ◽  
Vol 49 (11) ◽  
pp. 418-425 ◽  
Author(s):  
Van Tan Vu ◽  
Olivier Sename ◽  
Luc Dugard ◽  
Peter Gaspar

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Jianyong Yao ◽  
Guichao Yang ◽  
Dawei Ma

The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred), there is no fault alarmed; otherwise (i.e., a severe fault has occurred), the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE) condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.


2021 ◽  
Vol 158 ◽  
pp. 107769
Author(s):  
Wenxiang Deng ◽  
Jianyong Yao ◽  
Yaoyao Wang ◽  
Xiaowei Yang ◽  
Jiuhui Chen

2021 ◽  
Vol 16 (2-3) ◽  
pp. 61-74
Author(s):  
Sahar Ghasemi ◽  
Amir Mirmiran ◽  
Yulin Xiao ◽  
Kevin Mackie

A super lightweight deck can enhance load rating and functionality of a bridge, especially those identified as structurally deficient. This study was aimed to develop and experimentally validate a novel bridge deck as an ultra-lightweight low-profile waffle slab of ultra-high-performance concrete (UHPC) with either carbon fiber reinforced polymer (CFRP) or high strength steel (HSS) reinforcement. The proposed system lends itself to accelerated bridge construction, rapid deck replacement in bridges with load restrictions, and bridge widening applications without the need to replace girders. Performance and failure modes of the proposed deck were initially assessed through extensive lab experiments and finite element analysis, which together confirmed that the proposed deck panel meets the AASHTO LRFD requirements. The proposed deck system is not susceptible to punching shear of its thin slab and fails in a rather ductile manner. To evaluate its long-term performance, the system was further tested under the dynamic impact of wheel load at the Accelerated Pavement Testing (APT) facility of the Florida Department of Transportation using a Heavy Vehicle Simulator (HVS).


Sign in / Sign up

Export Citation Format

Share Document