VERTICAL RIDING COMFORT OF ARTICULATED RAILWAY VEHICLES (A NEW METHOD FOR THE DYNAMIC ANALYSIS OF INTERMEDIATE VEHICLES IN A LONG TRAIN)

1986 ◽  
Vol 15 (sup1) ◽  
pp. 413-426 ◽  
Author(s):  
Masayuki Miyamoto ◽  
Hiroshi Fujimoto
Author(s):  
Jian-Qing Zhang ◽  
Ting-Li Yang

Abstract This work presents a new method for kinetostatic analysis and dynamic analysis of complex planar mechanisms, i.e. the ordered single-opened-chains method. This method makes use of the ordered single-opened chains (in short, SOC,) along with the properties of SOC, and the network constraints relationship between SOC,. By this method, any planar complex mechanism can be automatically decomposed into a series of the ordered single-opened chains and the optimal structural decomposition route (s) can be automatically selected for dynamic analysis, the paper present the dynamic equation which can be used to solve both the kinetostatic problem and the general dynamic problem. The main advantage of the proposed approach is the possibility to reduce the number of equations to be solved simultaneously to the minimum, and its high automation as well. The other advantage is the simplification of the determination of the coefficients in the equations, and thus it maybe result in a much less time-consuming algorthem. The proposed approach is illustrated with three examples. The presented method can be easily extended to the dynamic analysis of spatial mechanisms.


2002 ◽  
Vol 124 (3) ◽  
pp. 586-597 ◽  
Author(s):  
E. P. Petrov ◽  
K. Y. Sanliturk ◽  
D. J. Ewins

A new method for the dynamic analysis of mistuned bladed disks is presented. The method is based on exact calculation of the response of a mistuned system using response levels for the tuned assembly together with a modification matrix constructed from the frequency response function (FRF) matrix of the tuned system and a matrix describing the mistuning. The main advantages of the method are its efficiency and accuracy, which allow the use of large finite element models of practical bladed disk assemblies in parametric studies of mistuning effects on vibration amplitudes. A new method of calculating the FRF matrix of the tuned system using a sector model is also developed so as to improve the efficiency of the method even further, making the proposed method a very attractive tool for mistuning studies. Various numerical aspects of the proposed method are addressed and its accuracy and efficiency are demonstrated using representative test cases.


2014 ◽  
Vol 1006-1007 ◽  
pp. 298-303
Author(s):  
Qing Lin Chen ◽  
Qi Lin

The interference between cables and surface of acutator limits the movement in the cable-driven parallel mechanism. The mechanism with fixed hinge can’t absolutely avoid the interference point of the track when using linear programming method. One new method, named as distant interference, was proposed to pick out all the interferential points of the track. Based on the principle of symmetrical force, the alteration to position of the six fixed hinges and two extensive hinges eliminated the interference. Through the simulation of combined spiral movement, the workspace of the flexible cable-driven parallel mechanism is larger than that of the mechanism with fixed hinge and reduce the interferece of long and big track. Compared with the original mechanism, the value of cables force in the flexible cable-driven parallel mechanism is smooth, continous and no sudden change.


2013 ◽  
Vol 655-657 ◽  
pp. 412-415
Author(s):  
Zuo Shi Liu ◽  
Yi Guo Wei

Conventional models for mechanical rotors based on Automatic Dynamic Analysis of Mechanical Systems (ADAMS) are over-constraint. This paper proposes a new method for simulating the stiffness and damping of bearings using bushing and other kinematic pairs. Analysis and Simulation for balance of rigid rotors by ADAMS were performed. To reduce the imbalance inertial force, the balance weight of a take-up machine has been optimized. The results were verified by the prototype test. Our results suggest a more effective method for balance of mechanical rotors in the design stage.


Sign in / Sign up

Export Citation Format

Share Document