Power values of generalized skew derivations preserving Jordan product on Lie ideals

2021 ◽  
pp. 1-13
Author(s):  
Francesco Rania ◽  
Giovanni Scudo
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mark Girard ◽  
Martin Plávala ◽  
Jamie Sikora

AbstractGiven two quantum channels, we examine the task of determining whether they are compatible—meaning that one can perform both channels simultaneously but, in the future, choose exactly one channel whose output is desired (while forfeiting the output of the other channel). Here, we present several results concerning this task. First, we show it is equivalent to the quantum state marginal problem, i.e., every quantum state marginal problem can be recast as the compatibility of two channels, and vice versa. Second, we show that compatible measure-and-prepare channels (i.e., entanglement-breaking channels) do not necessarily have a measure-and-prepare compatibilizing channel. Third, we extend the notion of the Jordan product of matrices to quantum channels and present sufficient conditions for channel compatibility. These Jordan products and their generalizations might be of independent interest. Last, we formulate the different notions of compatibility as semidefinite programs and numerically test when families of partially dephasing-depolarizing channels are compatible.


2013 ◽  
Vol 47 (3) ◽  
pp. 035301 ◽  
Author(s):  
Paolo Facchi ◽  
Leonardo Ferro ◽  
Giuseppe Marmo ◽  
Saverio Pascazio
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2095
Author(s):  
Artyom V. Yurov ◽  
Valerian A. Yurov

We demonstrate the way to derive the second Painlevé equation P2 and its Bäcklund transformations from the deformations of the Nonlinear Schrödinger equation (NLS), all the while preserving the strict invariance with respect to the Schlesinger transformations. The proposed algorithm allows for a construction of Jordan algebra-based completely integrable multiple-field generalizations of P2 while also producing the corresponding Bäcklund transformations. We suggest calling such models the JP-systems. For example, a Jordan algebra JMat(N,N) with the Jordan product in the form of a semi-anticommutator is shown to generate an integrable matrix generalization of P2, whereas the VN algebra produces a different JP-system that serves as a generalization of the Sokolov’s form of a vectorial NLS.


2018 ◽  
Vol 13 (10) ◽  
pp. 447-454 ◽  
Author(s):  
Miaomiao Wang ◽  
Xiaofei Qi

Sign in / Sign up

Export Citation Format

Share Document