Inference on maintenance service policy under step-stress partially accelerated life tests using progressive censoring

Author(s):  
Intekhab Alam ◽  
Aquil Ahmed
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
M. M. Mohie EL-Din ◽  
S. E. Abu-Youssef ◽  
Nahed S. A. Ali ◽  
A. M. Abd El-Raheem

Based on progressive censoring, step-stress partially accelerated life tests are considered when the lifetime of a product follows power generalized Weibull distribution. The maximum likelihood estimates (MLEs) and Bayes estimates (BEs) are obtained for the distribution parameters and the acceleration factor. In addition, the approximate and bootstrap confidence intervals (CIs) of the estimators are presented. Furthermore, the optimal stress change time for the step-stress partially accelerated life test is determined by minimizing the asymptotic variance of MLEs of the model parameters and the acceleration factor. Simulation results are carried out to study the precision of the MLEs and BEs for the parameters involved.


METRON ◽  
2016 ◽  
Vol 74 (2) ◽  
pp. 253-273 ◽  
Author(s):  
M. M. Mohie El-Din ◽  
S. E. Abu-Youssef ◽  
Nahed S. A. Ali ◽  
A. M. Abd El-Raheem

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolin Shi ◽  
Fen Liu ◽  
Yimin Shi

This paper deals with the Bayesian inference on step-stress partially accelerated life tests using Type II progressive censored data in the presence of competing failure causes. Suppose that the occurrence time of the failure cause follows Pareto distribution under use stress levels. Based on the tampered failure rate model, the objective Bayesian estimates, Bayesian estimates, and E-Bayesian estimates of the unknown parameters and acceleration factor are obtained under the squared loss function. To evaluate the performance of the obtained estimates, the average relative errors (AREs) and mean squared errors (MSEs) are calculated. In addition, the comparisons of the three estimates of unknown parameters and acceleration factor for different sample sizes and different progressive censoring schemes are conducted through Monte Carlo simulations.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2163
Author(s):  
Tarek Berghout ◽  
Mohamed Benbouzid ◽  
Leïla-Hayet Mouss

Since bearing deterioration patterns are difficult to collect from real, long lifetime scenarios, data-driven research has been directed towards recovering them by imposing accelerated life tests. Consequently, insufficiently recovered features due to rapid damage propagation seem more likely to lead to poorly generalized learning machines. Knowledge-driven learning comes as a solution by providing prior assumptions from transfer learning. Likewise, the absence of true labels was able to create inconsistency related problems between samples, and teacher-given label behaviors led to more ill-posed predictors. Therefore, in an attempt to overcome the incomplete, unlabeled data drawbacks, a new autoencoder has been designed as an additional source that could correlate inputs and labels by exploiting label information in a completely unsupervised learning scheme. Additionally, its stacked denoising version seems to more robustly be able to recover them for new unseen data. Due to the non-stationary and sequentially driven nature of samples, recovered representations have been fed into a transfer learning, convolutional, long–short-term memory neural network for further meaningful learning representations. The assessment procedures were benchmarked against recent methods under different training datasets. The obtained results led to more efficiency confirming the strength of the new learning path.


Sign in / Sign up

Export Citation Format

Share Document