Synthesis, structure, Hirshfeld analysis and fluorescence properties of a new asymmetric salamo-based ligand and its Cu(II) complex involving oxime oxygen coordination

2020 ◽  
Vol 73 (15) ◽  
pp. 2209-2223 ◽  
Author(s):  
Xin Xu ◽  
Ji-Fa Wang ◽  
Ruo-Nan Bian ◽  
Li Zhao
1967 ◽  
Vol 64 ◽  
pp. 173-182 ◽  
Author(s):  
Erhard J. Schimitschek ◽  
Richard B. Nehrich Jr ◽  
John A. Trias

2000 ◽  
Vol 72 (3) ◽  
pp. 415 ◽  
Author(s):  
Joydip Das ◽  
Rosalie K. Crouch ◽  
Parkson Lee-Gau Chong

2018 ◽  
Author(s):  
Katherine Marczenko ◽  
James Goettel ◽  
Gary Schrobilgen

Oxygen coordination to the Xe(VI) atom of XeO<sub>3</sub> was observed in its adducts with triphenylphosphine oxide, dimethylsulfoxide, pyridine-N-oxide, and acetone. The crystalline adducts were characterized by low-temperature, single-crystal X-ray diffraction and Raman spectroscopy. Unlike solid XeO<sub>3</sub>, which detonates when mechanically or thermally shocked, the solid [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3</sub>, [(CH<sub>3</sub>)<sub>2</sub>SO]<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub>,<sub> </sub>and (C<sub>5</sub>H<sub>5</sub>NO)<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> adducts are insensitive to mechanical shock, but undergo rapid deflagration when ignited by a flame. Both [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3 </sub>and (C<sub>5</sub>H<sub>5</sub>NO)<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> are air-stable whereas [(CH<sub>3</sub>)<sub>2</sub>SO]<sub>3</sub>(XeO<sub>3</sub>)<sub>2</sub> slowly decomposes over several days and [(CH<sub>3</sub>)<sub>2</sub>CO]<sub>3</sub>XeO<sub>3</sub> undergoes adduct dissociation at room temperature. The xenon coordination sphere of [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>PO]<sub>2</sub>XeO<sub>3</sub> is a distorted square pyramid which provides the first example of a five-coordinate XeO<sub>3</sub> adduct. The xenon coordination spheres of the remaining adducts are distorted octahedra comprised of three Xe---O secondary contacts that are approximately trans to the primary Xe–O bonds of XeO<sub>3</sub>. Quantum-chemical calculations were used to assess the Xe---O adduct bonds, which are predominantly electrostatic σ-hole bonds between the nucleophilic oxygen atoms of the bases and the σ-holes of the xenon atoms.


Author(s):  
Keita Nobuhara ◽  
Yusuke Inagaki ◽  
Wataru Setaka

Intramolecular charge transfer (ICT) fluorescence has been widely investigated and exploited in sensor molecules. However, steric effects on the ICT fluorescence properties have rarely been reported so far, although research...


AIP Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 125008
Author(s):  
Siqi Li ◽  
Yunpeng Rao ◽  
Liangliang Pan ◽  
Yongjun Chen ◽  
Xiaoyu Zhai ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Imran ◽  
Ahmad Irfan ◽  
Mohammed A. Assiri ◽  
Sajjad H. Sumrra ◽  
Muhammad Saleem ◽  
...  

AbstractThe Aerva plants are exceptionally rich in phytochemicals and possess therapeutics potential. Phytochemical screening shows that Aerva persica (Burm.f.) Merr. contains highest contents i.e., total phenolics, flavonoids, flavonols, tannins, alkaloids, carbohydrates, anthraquinones and glycosides. In-vitro antibacterial and enzymatic (carbonic anhydrase) inhibition studies on methanol extracts of A. persica indicated the presence of biological active constituents within chloroform soluble portions. Investigation in the pure constituents on the chloroform portions of A. persica accomplished by column chromatography, NMR and MS analysis. The bioguided isolation yields four chemical constituents of coumaronochromone family, namely aervin (1-4). These pure chemical entities (1-4) showed significant antibacterial activity in the range of 60.05–79.21 µg/ml against various bacterial strains using ampicillin and ciprofloxacin as standard drugs. The compounds 1-4 showed promising carbonic anhydrase inhibition with IC50 values of 19.01, 18.24, 18.65 and 12.92 µM, respectively, using standard inhibitor acetazolamide. First-principles calculations revealed comprehensive intramolecular charge transfer in the studied compounds 1-4. The spatial distribution of highest occupied and lowest unoccupied molecular orbitals, ionization potential, molecular electrostatic potential and Hirshfeld analysis revealed that these coumaronochromone compounds would be proficient biological active compounds. These pure constituents may be used as a new pharmacophore to treat leaukomia, epilepsy, glaucoma and cystic fibrosis.


Sign in / Sign up

Export Citation Format

Share Document