Hydrogen diffusion in crystalline silicon: A tight-binding molecular dynamics study

1994 ◽  
Vol 52 (2-3) ◽  
pp. 137-149 ◽  
Author(s):  
G. Panzarini ◽  
L. Colombo
1995 ◽  
Vol 396 ◽  
Author(s):  
M. tang ◽  
L. colombo ◽  
T. Diaz De La Rubia

AbstractTight-binding molecular dynamics (TBMD) simulations are performed (i) to evaluate the formation and binding energies of point defects and defect clusters, (ii) to compute the diffusivity of self-interstitial and vacancy in crystalline silicon, and (iii) to characterize the diffusion path and mechanism at the atomistic level. In addition, the interaction between individual defects and their clustering is investigated.


1993 ◽  
Vol 321 ◽  
Author(s):  
D. Maric ◽  
L. Colombo

ABSTRACTWe present an investigation on the amorphization process of crystalline silicon induced by ion beam bombardment by simulating the insertion of self-interstitials at different temperatures. The simulation is carried out by tight-binding molecular dynamics which allows for a detailed characterization of the chemical bonding and electronic properties of the irradiated samples. The irradiation process consists of two steps: (i) insertion of defects at a constant rate; (ii) annealing of the sample and observation of its structural properties. Thanks to the large size of the simulation cell (up to 276 atoms) we can characterize the amorphous network both on the short-range and Medium-range length scale. Electronic properties are investigated as well and their evolution is monitored during the insertion process. Finally, we present a thorough comparison of the structural properties of the irradiated sample with amorphous silicon as obtained by rapid quench from the Melt.


1993 ◽  
Vol 316 ◽  
Author(s):  
D. Maric ◽  
L. Colombo

ABSTRACTWe present an investigation on the amorphization process of crystalline silicon induced by ion beam bombardment by simulating the insertion of self-interstitials at different temperatures. The simulation is carried out by tight-binding molecular dynamics which allows for a detailed characterization of the chemical bonding and electronic properties of the irradiated samples. The irradiation process consists of two steps: (i) insertion of defects at a constant rate; (ii) annealing of the sample and observation of its structural properties. Thanks to the large size of the simulation cell (up to 276 atoms) we can characterize the amorphous network both on the short-range and medium-range length scale. Electronic properties are investigated as well and their evolution is monitored during the insertion process. Finally, we present a thorough comparison of the structural properties of the irradiated sample with amorphous silicon as obtained by rapid quench from the melt.


1992 ◽  
Vol 291 ◽  
Author(s):  
Andrew Horsfield ◽  
Paulette Clancy

ABSTRACTThe melting of crystalline silicon and the cooling of liquid silicon are investigated using Molecular Dynamics. Both the Stillinger-Weber (SW) potential and the Tight-Binding Bond Model are used to calculate the forces. The electrical properties are investigated using an empirical pseudopotential method with a plane wave basis. The melting point of the solid is found to be about 2300K. The dependency of this temperature with cell size is investigated. On cooling, there are changes in some of the properties of the liquid: the energy per particle decreases, the diffusion constant decreases, and the low frequency electrical conductivity decreases slightly as the temperature decreases. Between 1180K and 980K the liquid undergoes a transition to a glassy phase. There are large changes in the pair correlation function, the SW three-body energy distribution, the diffusion constant, the density of electron single particle states and the electrical conductivity. All of these changes are consistent with increased tetrahedral bonding.


1997 ◽  
Vol 467 ◽  
Author(s):  
R. Biswas ◽  
Qiming Li ◽  
B. C. Pan ◽  
Y. Yoon

ABSTRACTTight-binding molecular dynamics calculations reveal a new mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicon and breaking their Si-Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network and have lower energies than H at the center of stretched Si-Si bonds.


Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


Sign in / Sign up

Export Citation Format

Share Document