scholarly journals Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks

Author(s):  
André Pineau

The size and the character (low and large angle, special boundaries, tilt and twist boundaries, twins) of the grain boundaries (GBs) in polycrystalline materials influence their strength and their fracture toughness. Recent studies devoted to nanocrystalline (NC) materials have shown a deviation from the Hall–Petch law. Special GBs formed by Σ3 twins in face-centred cubic metals are also known to have a strong effect on the mechanical behaviour of these metals, in particular their work-hardening rate. Grain orientation influences also crack path, the fracture toughness of body-centred cubic (BCC) metals and the fatigue crack growth rate of microstructurally short cracks. This paper deals both with slip transfer at GBs and with the interactions between propagating cracks with GBs. In the analysis of slip transfer, the emphasis is placed on twin boundaries (TBs) for which the dislocation reactions during slip transfer are analysed theoretically, experimentally and using the results of atomic molecular simulations published in the literature. It is shown that in a number of situations this transfer leads to a normal motion of the TB owing to the displacement of partial dislocations along the TB. This motion can generate a de-twinning effect observed in particular in NC metals. Crack propagation across GBs is also considered. It is shown that cleavage crack path behaviour in BCC metals is largely dependent on the twist component of the GBs. A mechanism for the propagation of these twisted cracks involving a segmentation of the crack front and the existence of intergranular parts is discussed and verified for a pressure vessel steel. A similar segmentation seems to occur for short fatigue cracks although, quite surprisingly, this crossing mechanism for fatigue cracks does not seem to have been examined in very much detail in the literature. Metallurgical methods used to improve the strength of the materials, via grain boundaries, are briefly discussed.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1224
Author(s):  
Maria S. Yankova ◽  
Andrey P. Jivkov ◽  
Rajesh Patel

Ductile-to-brittle-transition refers to observable change in fracture mode with decreasing temperature—from slow ductile crack growth to rapid cleavage. It is exhibited by body-centred cubic metals and presents a challenge for integrity assessment of structural components made of such metals. Local approaches to cleavage fracture, based on Weibull stress as a cleavage crack-driving force, have been shown to predict fracture toughness at very low temperatures. However, they are ineffective in the transition regime without the recalibration of Weibull stress parameters, which requires further testing and thus diminishes their predictive capability. We propose new Weibull stress formulation with thinning function based on obstacle hardening model, which modifies the number of cleavage-initiating features with temperature. Our model is implemented as a post-processor of finite element analysis results. It is applied to analyses of standard compact tension specimens of typical reactor pressure vessel steel, for which deformation and fracture toughness properties in the transition regime are available. It is shown that the new Weibull stress is independent of temperature, and of Weibull shape parameter, within the experimental error. It accurately predicts the fracture toughness at any temperature in the transition regime without relying upon empirical fits for the first time.


Author(s):  
Claudio Ruggieri ◽  
Robert H. Dodds

This work describes a micromechanics methodology based upon a local failure criterion incorporating the strong effects of plastic strain on cleavage fracture coupled with statistics of microcracks. A central objective is to gain some understanding on the role of plastic strain on cleavage fracture by means of a probabilistic fracture parameter and how it contributes to the cleavage failure probability. A parameter analysis is conducted to assess the general effects of plastic strain on fracture toughness correlations for conventional SE(B) specimens with varying crack size over specimen width ratios. Another objetive is to evaluate the effectiveness of the modified Weibull stress (σ̃w) model to correct effects of constraint loss in PCVN specimens which serve to determine the indexing temperature, T0, based on the Master Curve methodology. Fracture toughness testing conducted on an A285 Grade C pressure vessel steel provides the cleavage fracture resistance (Jc) data needed to estimate T0. Very detailed non-linear finite element analyses for 3-D models of plane-sided SE(B) and PCVN specimens provide the evolution of near-tip stress field with increased macroscopic load (in terms of the J-integral) to define the relationship between σ̃w and J. For the tested material, the Weibull stress methodology yields estimates for the reference temperature, T0, from small fracture specimens which are in good agreement with the corresponding estimates derived from testing of much larger crack configurations.


Author(s):  
Michael Ford ◽  
Peter James

The need to predict changes in fracture toughness for materials where the tensile properties change through life, such as with irradiation, whilst accounting for geometric constraint effects, such as crack size, are clearly important. Currently one of the most likely approaches by which to develop such ability are through application of local approach models. These approaches appear to be sufficient in predicting lower shelf toughness under high constraint conditions, but may fail when attempting to predict toughness in the transition region, for low constraint geometries or for different irradiation states, when using the same parameters, making reliable predictions impossible. Cleavage toughness predictions in the transition regime are here made with a stochastic, Monte Carlo implementation of the recently proposed James-Ford-Jivkov model. This implementation is based around the creation of individual initiators following the experimentally observed distribution for specific reactor pressure vessel steel, and determining if these initiators form voids or cause cleavage failure using the model’s improved criterion for particle failure. This implementation has been presented previously in PVP2015-45905, where it was successfully applied across different constraint conditions; in the work presented here it is applied across different irradiation conditions for a second type of steel. The model predicts the fracture toughness in a large part of the transition region, demonstrates an ability to predict the irradiation shift and shows a level of scatter similar to that observed experimentally. All results presented, for a given material, are obtained without changes in the model parameters. This suggests that the model can be used predicatively for assessing toughness changes due to constraint-, irradiation- and temperature-driven plasticity changes.


Author(s):  
Toru Osaki ◽  
Hiroshi Matsuzawa

Reconstitution in this paper means to constitute the original size compact specimen, which is made of the insert cut out from tested specimen and tubs welded to the insert. It is a promising technique to secure an adequate number of surveillance specimens for long-term operation of nuclear power plants. The fracture toughness of each reactor vessel of pressurized water reactors in Japan is measured periodically by 1/2T compact surveillance specimens, and is applied to assess the structural integrity of the reactor vessel under pressurized thermal shock loads. [1] This practice should be continued and enhanced if possible, after the full use of originally installed specimens, because its fracture toughness is lower than before. Reconstitution of irradiated 1/2T compact specimens to the original size was studied and demonstrated. Reconstituted specimens were composed of an irradiated material called an insert and un-irradiated tabs welded to the insert. It was demonstrated that the central part of the insert near the crack tip was not annealed by the thermal transient during welding if properly adjusted YAG laser welding was applied. Crack-tip opening and compliance before and after reconstitution were investigated by testing and analysis. Testing and analysis of un-irradiated specimens before reconstitution showed that the plastic deformation expanded to an area wider than 6 mm, the half width of the insert if it was a reconstituted specimen. The material had medium fracture toughness. The reconstituted specimen of the same material showed almost the same fracture toughness, although the weld could not be yielded as the insert, which could affect the crack opening. The crack opening was immune to the change of the deformation far from the crack tip. Correlation between J at 2.5 mm crack extension and plastic deformation width, and the effects of short time annealing of the insert far from the crack tip during welding were studied. Integrating the results, the conditions for reconstituting the 1/2T compact specimen were settled. The reconstituted specimen with irradiated insert designed to meet the conditions showed little change in fracture toughness.


Author(s):  
Mikhail A. Sokolov ◽  
Randy K. Nanstad

The Heavy-Section Steel Irradiation (HSSI) Program at Oak Ridge National Laboratory includes a task to investigate the shape of the fracture toughness master curve for reactor pressure vessel steel highly embrittled as a consequence of irradiation exposure, and to examine the ability of the Charpy 41-J shift to predict the fracture toughness shift. As part of this task, a low upper-shelf WF-70 weld obtained from the beltline region of the Midland Unit 1 reactor pressure vessel was characterized in terms of static initiation and Charpy impact toughness in the unirradiated and irradiated conditions. Irradiation of this weld was performed at the University of Michigan Ford Reactor at 288°C to neutron fluence of 3.4×1019 neutron/cm2 in the HSSI irradiation-anneal-reirradiation facility. This reusable facility allowed the irradiation of either virgin or previously irradiated material in a well-controlled temperature regime, including the ability to perform in-situ annealing. This was the last capsule irradiated in this facility before reactor shut down. Thus, the Midland beltline weld was irradiated within the HSSI Program to three fluences — 0.5×1019; 1.0×1019; and 3.4×1019 neutron/cm2. It was anticipated that it would provide an opportunity to address fracture toughness curve shape and Charpy 41-J shift compatibility issues at different levels of embrittlement, including the highest dose considered to be in the range of the current end of life fluence. It was found that the Charpy 41-J shift practically saturated after neutron fluence of 1.0×1019 neutron/cm2. The transition fracture toughness shift after 3.4×1019 neutron/cm2 was only slightly higher than that after 1.0×1019 neutron/cm2. In all cases, transition fracture toughness shifts were lower than predicted by the Regulatory Guide 1.99, Rev. 2 equation.


Author(s):  
B. Tanguy ◽  
A. Parrot ◽  
F. Cle´mendot ◽  
G. Chas

For western pressure vessel reactors, assessment of pressure vessel steels irradiation embrittlement due to neutron irradiation is based on a semi-empirical formulae which predicts the shift of a reference lower bound fracture toughness curve as a function of fluence and embrittlement-involved chemical elements. Periodically, in order to monitor the embrittlement of each RPV, the predictions of the formulae is confronted to experimental results obtained from Charpy specimens located in surveillance capsules irradiated with a higher fluence level than the pressure vessel itself. Historically only the shift of the temperature index defined for a given level of energy, e.g. 56J in the French surveillance program, is used. In support to the French surveillance program methodology, for some of the French RPVs, physical models of fracture (for both cleavage and ductile fracture) are used to analyse in details the whole experimental basis available at different levels of fluence. This study presents the methodology developed in order to analyse the experimental results of a RPV steel from the french surveillance program, including Charpy and fracture toughness tests at different levels of fluence i.e. of embrittlement. The methodology applied aims to use the numerous Charpy tests results available in order to assess, at the same fluence levels, the fracture toughness embrittlement. The results are then compared to available fracture toughness results for a given level of embrittlement.


Sign in / Sign up

Export Citation Format

Share Document