Dislocation-loop-length distribution and frequency-dependent damping for small impurity concentrations

1980 ◽  
Vol 41 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Eva Bode
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2390 ◽  
Author(s):  
Abdullah Hoshmeh ◽  
Uwe Schmidt ◽  
Akif Gürlek

The knowledge about the behavior of cables is substantial in cases of transients or in cases of faults. However, there are only a few models that are tailored to the current requirements for calculations of transient phenomena in three-phase cable systems. These models are based on complex structures. PI-section cable models with simple structures were previously qualified only for calculations in the frequency domain. A new full frequency-dependent cable model to simulate transient phenomena is introduced and validated. The model is based on lumped parameters with cascaded frequency-dependent PI-sections. For the implementation and the integration in simulation tools, it is important to investigate the impact of the PI-section parameters to the accuracy, the stability and the mathematical robustness. In this work, the impact of the frequency dependence of cable parameters, the length distribution and the number of PI-sections on the results of the developed three-phase cable model have been discussed. For simulations in the time domain, two algorithms have been presented to optimize the number of PI-sections based on a specified accuracy.


2000 ◽  
Vol 41 (4) ◽  
pp. 481-492
Author(s):  
Naohiko Takahashi ◽  
Morio Ito ◽  
Shuji Ishida ◽  
Takao Fujino ◽  
Mikiko Nakagawa ◽  
...  

2017 ◽  
Vol 137 (2) ◽  
pp. 147-153
Author(s):  
Akinori Hori ◽  
Hiroki Tanaka ◽  
Yuichiro Hayakawa ◽  
Hiroshi Shida ◽  
Keiji Kawahara ◽  
...  

1997 ◽  
Vol 473 ◽  
Author(s):  
J. A. Davis ◽  
J. D. Meindl

ABSTRACTOpportunities for Gigascale Integration (GSI) are governed by a hierarchy of physical limits. The levels of this hierarchy have been codified as: 1) fundamental, 2) material, 3) device, 4) circuit and 5) system. Many key limits at all levels of the hierarchy can be displayed in the power, P, versus delay, td, plane and the reciprocal length squared, L-2, versus response time, τ, plane. Power, P, is the average power transfer during a binary switching transition and delay, td, is the time required for the transition. Length, L, is the distance traversed by an interconnect that joins two nodes on a chip and response time, τ, characterizes the corresponding interconnect circuit. At the system level of the hierarchy, quantitative definition of both the P versus td and the L-2 versus τ displays requires an estimate of the complete stochastic wiring distribution of a chip.Based on Rent's Rule, a well known empirical relationship between the number of signal input/output terminals on a block of logic and the number of gate circuits with the block, a rigorous derivation of a new complete stochastic wire length distribution for an on-chip random logic network is described. This distribution is compared to actual data for modern microprocessors and to previously described distributions. A methodology for estimating the complete wire length distribution for future GSI products is proposed. The new distribution is then used to enhance the critical path model that determines the maximum clock frequency of a chip; to derive a preliminary power dissipation model for a random logic network; and, to define an optimal architecture of a multilevel interconnect network that minimizes overall chip size. In essence, a new complete stochastic wiring distribution provides a generic basis for maximizing the value obtained from a multilevel interconnect technology.


Sign in / Sign up

Export Citation Format

Share Document