Microstructural investigation of the brittle-to-ductile transition in Al-Pd-Mn quasicrystals

1999 ◽  
Vol 79 (9) ◽  
pp. 2195-2208 ◽  
Author(s):  
M. Wollgarten ◽  
H. Saka ◽  
A. Inoue
Author(s):  
Stuart A. Maloy

MoSi2 has recently been investigated as a potential material for high temperature structural applications. It has excellent oxidation resistance up to 1700°C, a high melting temperature, 2030°C, and a brittle-to-ductile transition temperature at 900-1000°C. WSi2 is isomorphous with MoSi2 and has a body-centered tetragonal unit cell of the space group 14/mmm. The lattice parameters are a=3.20 Å and c=7.84 Å for MoSi2 and a=3.21 Å and c=7.88 Å for WSi2. Therefore, WSi2 was added to MoSi2 to improve its strength via solid solution hardening. The purpose of this study was to investigate the slip systems in polycrystalline MoSi2/WSi2 alloys.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3398
Author(s):  
Katarzyna Konopka ◽  
Marek Krasnowski ◽  
Justyna Zygmuntowicz ◽  
Konrad Cymerman ◽  
Marcin Wachowski ◽  
...  

The paper describes an investigation of Al2O3 samples and NiAl–Al2O3 composites consolidated by pulse plasma sintering (PPS). In the experiment, several methods were used to determine the properties and microstructure of the raw Al2O3 powder, NiAl–Al2O3 powder after mechanical alloying, and samples obtained via the PPS. The microstructural investigation of the alumina and composite properties involves scanning electron microscopy (SEM) analysis and X-ray diffraction (XRD). The relative densities were investigated with helium pycnometer and Archimedes method measurements. Microhardness analysis with fracture toughness (KIC) measures was applied to estimate the mechanical properties of the investigated materials. Using the PPS technique allows the production of bulk Al2O3 samples and intermetallic ceramic composites from the NiAl–Al2O3 system. To produce by PPS method the NiAl–Al2O3 bulk materials initially, the composite powder NiAl–Al2O3 was obtained by mechanical alloying. As initial powders, Ni, Al, and Al2O3 were used. After the PPS process, the final composite materials consist of two phases: Al2O3 located within the NiAl matrix. The intermetallic ceramic composites have relative densities: for composites with 10 wt.% Al2O3 97.9% and samples containing 20 wt.% Al2O3 close to 100%. The hardness of both composites is equal to 5.8 GPa. Moreover, after PPS consolidation, NiAl–Al2O3 composites were characterized by high plasticity. The presented results are promising for the subsequent study of consolidation composite NiAl–Al2O3 powder with various initial contributions of ceramics (Al2O3) and a mixture of intermetallic–ceramic composite powders with the addition of ceramics to fabricate composites with complex microstructures and properties. In composites with complex microstructures that belong to the new class of composites, in particular, the synergistic effect of various mechanisms of improving the fracture toughness will be operated.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1537
Author(s):  
Beata Skowrońska ◽  
Tomasz Chmielewski ◽  
Mariusz Kulczyk ◽  
Jacek Skiba ◽  
Sylwia Przybysz

The paper presents the microstructural investigation of a friction-welded joint made of 316L stainless steel with an ultrafine-grained structure obtained by hydrostatic extrusion (HE). Such a plastically deformed material is characterized by a metastable state of energy equilibrium, increasing, among others, its sensitivity to high temperatures. This feature makes it difficult to weld ultra-fine-grained metals without losing their high mechanical properties. The use of high-speed friction welding and a friction time of <1 s reduced the scale of the weakening of the friction joint in relation to result obtained in conventional rotary friction welding. The study of changes in the microstructure of individual zones of the friction joint was carried out on an optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) analysis system. The correlation between the microstructure and hardness of the friction joint is also presented. The heat released during the high-speed friction welding initiated the process of dynamic recrystallization (DRX) of single grains in the heat-affected zone (HAZ). The additional occurrence of strong plastic deformations (in HAZ) during flash formation and internal friction (in the friction weld and high-temperature HAZ) contributed to the formation of a highly deformed microstructure with numerous sub-grains. The zones with a microstructure other than the base material were characterized by lower hardness. Due to the complexity of the microstructure and its multifactorial impact on the properties of the friction-welded joint, strength should be the criterion for assessing the properties of the joint.


2021 ◽  
Vol 292 ◽  
pp. 123455
Author(s):  
Omar M. Abdulkareem ◽  
Amor Ben Fraj ◽  
Marwen Bouasker ◽  
Lahcen Khouchaf ◽  
Abdelhafid Khelidj

Sign in / Sign up

Export Citation Format

Share Document