Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction

Author(s):  
Shafiq Ahmad ◽  
Muhammad Naveed Khan ◽  
Sohail Nadeem
2020 ◽  
Vol 9 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
P.V. Satya Narayana ◽  
Bhumarapu Venkateswarlu

AbstractThe present investigation deals with the steady three-dimensional flow and heat transfer of nanofluids due to stretching sheet in the presence of magnetic field and heat source. Three types of water based nanoparticles namely, copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are considered in this study. The temperature dependent variable thermal conductivity and thermal radiation has been introduced in the energy equation. Using suitable similarity transformations the dimensional non-linear expressions are converted into dimensionless system and are then solved numerically by Runge-Kutta-Fehlberg scheme along with well-known shooting technique. The impact of various flow parameters on axial and transverse velocities, temperature, surface frictional coefficients and rate of heat transfer coefficients are visualized both in qualitative and quantitative manners in the vicinity of stretching sheet. The results reviled that the temperature and velocity of the fluid rise with increasing values of variable thermal conductivity parameter. Also, the temperature and normal velocity of the fluid in case of Cu-water nanoparticles is more than that of Al2O3- water nanofluid. On the other hand, the axial velocity of the fluid in case of Al2O3- water nanofluid is more than that of TiO2nanoparticles. In addition, the current outcomes are matched with the previously published consequences and initiate to be a good contract as a limiting sense.


2020 ◽  
Vol 16 (6) ◽  
pp. 1577-1594
Author(s):  
Kazeem Babawale Kasali ◽  
Yusuf Olatunji Tijani ◽  
Matthew Oluwafemi Lawal ◽  
Yussuff Titilope Lawal

PurposeIn this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects of Soret, Dufour, thermal radiation and chemical reaction.Design/methodology/approachAn appropriate semi-analytical technique called homotopy analysis method (HAM) was used to solve the resulting nonlinear dimensionless boundary value problem, and the method was validated numerically using a finite difference scheme implemented on Maple software.FindingsIt was observed that apart from excellence agreement with the results in literature, the results obtained gave further insights into the behaviour of the system.Originality/valueThe purpose of this research is to investigate heat and mass transfer profiles of a MHD viscoelastic fluid flow over an exponentially stretching sheet in the influence of chemical reaction, thermal radiation and cross-diffusion which are hitherto neglected in previous studies.


2016 ◽  
Vol 14 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Ahmed M. Megahed

AbstractIn this paper, we introduce a theoretical and numerical study for the effects of thermal buoyancy and constant heat flux on the Casson fluid flow and heat transfer over an exponentially stretching sheet taking into account the effects of variable thermal conductivity, heat generation/absorption and viscous dissipation. The governing partial differential equations are transformed into coupled, non-linear ordinary differential equations by using suitable transformations. Numerical solutions to these equations are obtained by using the fourth order Runge-Kutta method with the shooting technique. The effects of various physical parameters which governing the flow and heat treansfer such as the buoyancy parameter, the thermal conductivity parameter, heat generation or absorption parameter and the Prandtl number on velocity and temperature are discussed by using graphical approach. Moreover, numerical results indicate that the local skin-friction coefficient and the local Nusselt number are strongly affected by the constant heat flux.


Sign in / Sign up

Export Citation Format

Share Document