scholarly journals FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH HALL, THERMAL RADIATION AND CHEMICAL REACTION EFFECTS

2017 ◽  
Vol 9 ◽  
Author(s):  
D. Srinivasacharya ◽  
P. Jagadeeshwar
2020 ◽  
Vol 16 (6) ◽  
pp. 1577-1594
Author(s):  
Kazeem Babawale Kasali ◽  
Yusuf Olatunji Tijani ◽  
Matthew Oluwafemi Lawal ◽  
Yussuff Titilope Lawal

PurposeIn this paper, we studied the steady flow of a radiative magnetohydrodynamics viscoelastic fluid over an exponentially stretching sheet. This present work incorporated the effects of Soret, Dufour, thermal radiation and chemical reaction.Design/methodology/approachAn appropriate semi-analytical technique called homotopy analysis method (HAM) was used to solve the resulting nonlinear dimensionless boundary value problem, and the method was validated numerically using a finite difference scheme implemented on Maple software.FindingsIt was observed that apart from excellence agreement with the results in literature, the results obtained gave further insights into the behaviour of the system.Originality/valueThe purpose of this research is to investigate heat and mass transfer profiles of a MHD viscoelastic fluid flow over an exponentially stretching sheet in the influence of chemical reaction, thermal radiation and cross-diffusion which are hitherto neglected in previous studies.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Stanford Shateyi ◽  
Gerald T. Marewo

Abstract We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (2) ◽  
pp. 187-200
Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

The heat and mass transfer of steady magnetohydrodynamics of dusty Jeffrey fluid past an exponentially stretching sheet in the presence of thermal radiation have been investigated. The main purpose of this study is to conduct a detailed analysis of flow behaviour of suspended dust particles in non-Newtonian fluid. The governing equations hav been converted into dimensionless form, and then solved numerically via the Keller-box method. The expression of Sherwood number, Nusselt number and skin friction have been evaluated, and then displayed in tabular forms. Velocity, temperature and concentration profiles are presented graphically. It is observed that large value of dust particles mass concentration parameter has reduced the flow velocity significantly. Increase in radiation parameter enhances the temperature, whereas the increment in Schmidt number parameter reduces the concentration.


Sign in / Sign up

Export Citation Format

Share Document