frictional coefficients
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 18)

H-INDEX

22
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6599
Author(s):  
Eri Miura-Fujiwara ◽  
Soichiro Yamada ◽  
Keisuke Mizushima ◽  
Masahiko Nishijima ◽  
Yoshimi Watanabe ◽  
...  

We found that specific biomedical Ti and its alloys, such as CP Ti, Ti–29Nb–13Ta–4.6Zr, and Ti–36Nb–2Ta–3Zr–0.3O, form a bright white oxide layer after a particular oxidation heat treatment. In this paper, the interfacial microstructure of the oxide layer on Ti–29Nb–13Ta–4.6Zr and the exfoliation resistance of commercially pure (CP) Ti, Ti–29Nb–13Ta–4.6Zr, and Ti–36Nb–2Ta–3Zr–0.3O were investigated. The alloys investigated were oxidized at 1273 or 1323 K for 0.3–3.6 ks in an air furnace. The exfoliation stress of the oxide layer was high in Ti–29Nb–13Ta–4.6Zr and Ti–36Nb–2Ta–3Zr–0.3O, and the maximum exfoliation stress was as high as 70 MPa, which is almost the same as the stress exhibited by epoxy adhesives, whereas the exfoliation stress of the oxide layer on CP Ti was less than 7 MPa, regardless of duration time. The nanoindentation hardness and frictional coefficients of the oxide layer on Ti–29Nb–13Ta–4.6Zr suggested that the oxide layer was hard and robust enough for artificial tooth coating. The cross-sectional transmission electron microscopic observations of the microstructure of oxidized Ti–29Nb–13Ta–4.6Zr revealed that a continuous oxide layer formed on the surface of the alloys. The Au marker method revealed that both in- and out-diffusion occur during oxidation in Ti–29Nb–13Ta–4.6Zr and Ti–36Nb–2Ta–3Zr–0.3O, whereas only out-diffusion governs oxidation in CP Ti. The obtained results indicate that the high exfoliation resistance of the oxide layer on Ti–29Nb–13Ta–4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O are attributed to their dense microstructures composing of fine particles, and a composition-graded interfacial microstructure. On the basis of the results of our microstructural observations, the oxide formation mechanism of the Ti–Nb–Ta–Zr alloy is discussed.


2021 ◽  
pp. 1-27
Author(s):  
Junichi Hongu ◽  
Ryohei Horita ◽  
Takao Koide

Abstract This study proposes a modification of the Matsumoto equation using a directional parameter of tooth surfaces to adapt various gear finishing processes. The directional parameters of a contact surface, which affect oil film formations, have been discussed in the field of tribology; but this effect has been undetermined on the meshing gear tooth surfaces having directional machining marks. Thus, this paper investigates the relationship between the gear frictional coefficients and the directional parameters (based on ISO25178) of their tooth surfaces with the various finishing processes; and modifies the Matsumoto equation by introducing a new directional parameter to augment the various gear finishing processes. Our findings indicate that through optimizing the coefficient of the correction term the include the new directional parameter, the calculated friction values using the modified Matsumoto equation correlate more highly to the experimental friction values than that using the unmodified Matsumoto equation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
M. Formisano ◽  
M. C. De Sanctis ◽  
C. Federico ◽  
G. Magni ◽  
F. Altieri ◽  
...  

Numerical simulations are required to thermophysically characterize Oxia Planum, the landing site of the mission ExoMars 2022. A drilling system is installed on the ExoMars rover, and it will be able to analyze down to 2 meters in the subsurface of Mars. The spectrometer Ma_MISS (Mars Multispectral Imager for Subsurface, Coradini and Da Pieve, 2001) will investigate the lateral wall of the borehole generated by the drill, providing hyperspectral images. It is not fully clear if water ice can be found in the subsurface at Oxia Planum. However, Ma_MISS has the capability to characterize and map the presence of possible ices, in particular water ice. We performed simulations of the subsurface temperatures by varying the thermal inertia, and we quantified the effects of self-heating. Moreover, we quantified the heat released by the drilling operations, by exploring different frictional coefficients and angular drill velocities, in order to evaluate the lifetime of possible water ice.


2021 ◽  
Vol 9 ◽  
Author(s):  
Weibin Yang ◽  
Fulei Wang ◽  
Yongbo Tie ◽  
Dongpo Wang ◽  
Chaojun Ouyang

On August 21, 2020, a landslide occurred in Zhonghai village of Hanyuan County, Sichuan Province, China. The landslide is triggered by two successive rounds of heavy rainfall. This landslide can be clearly divided into an initial landslide and a main landslide. The main landslide is activated by the intense impact and overloading of the initial landslide. The depth-integrated continuum method is adopted to simulate the dynamic process. Due to the complicated failure process, it is found that there is no proper unified parameters in Coulomb model which could well reproduce the two successive landslides. It implies that the dynamic process of landslides is highly associated with the characteristics of sliding bodies. Here, an implement of variable frictional coefficients for different parts is proposed and the parameters are calibrated. It is demonstrated that results from numerical modeling match well with the field investigation. The complicated landslides in two different stage can both be efficiently revealed by depth-integrated continuum modeling.


2021 ◽  
Vol 12 (2) ◽  
pp. 29
Author(s):  
Risha Rufaqua ◽  
Martin Vrbka ◽  
Dušan Hemzal ◽  
Dipankar Choudhury ◽  
David Rebenda ◽  
...  

To understand the possible lubricant mechanism in ceramic-on-ceramic hip joint prostheses, biochemical reactions of the synovial fluid and the corresponding frictional coefficients were studied. The experiments were performed in a hip joint simulator using the ball-on-cup configuration with balls and cups made from two types of ceramics, BIOLOX®forte and BIOLOX®delta. Different lubricants, namely albumin, γ-globulin, hyaluronic acid and three model synovial fluids, were studied in the experiments and Raman spectroscopy was used to analyze the biochemical responses of these lubricants at the interface. BIOLOX®delta surface was found less reactive to proteins and model fluid lubricants. In contrast, BIOLOX®forte ball surface has shown chemisorption with both proteins, hyaluronic acid and model fluids imitating total joint replacement and osteoarthritic joint. There was no direct correlation between the measured frictional coefficient and the observed chemical reactions. In summary, the study reveals chemistry of lubricant film formation on ceramic hip implant surfaces with various model synovial fluids and their components.


2021 ◽  
Vol 883 ◽  
pp. 81-88
Author(s):  
Moritz Rossel ◽  
Max Böhnke ◽  
Christian Bielak ◽  
Mathias Bobbert ◽  
Gerson Meschut

In order to reduce the fuel consumption and consequently the greenhouse emissions, the automotive industry is implementing lightweight constructions in the body in white production. As a result, the use of aluminum alloys is continuously increasing. Due to poor weldability of aluminum in combination with other materials, mechanical joining technologies like clinching are increasingly used. In order to predict relevant characteristics of clinched joints and to ensure the reliability of the process, it is simulated numerically during product development processes. In this regard the predictive accuracy of the simulated process highly depends on the implemented friction model. In particular, the frictional behavior between the sheet metals affects the geometrical formation of the clinched joint significantly. This paper presents a testing method, which enables to determine the frictional coefficients between sheet metal materials for the simulation of clinching processes. For this purpose, the correlation of interface pressure and the relative velocity between aluminum sheets in clinching processes is investigated using numerical simulation. Furthermore, the developed testing method focuses on the specimen geometry as well as the reproduction of the occurring friction conditions between two sheet metal materials in clinching processes. Based on a methodical approach the test setup is explained and the functionality of the method is proven by experimental tests using sheet metal material EN AW6014.


2021 ◽  
Vol 1109 (1) ◽  
pp. 012027
Author(s):  
J Gonzaga ◽  
A T Ubando ◽  
E Arriola ◽  
R L Moran ◽  
N R E Lim ◽  
...  

Author(s):  
Do Van Linh ◽  
Nguyen Loi Loc ◽  
Vu Trong Tan ◽  
Nguyen Xuan Huy ◽  
Nguyen Thi Thu Trang ◽  
...  

This study estimates the shear friction coefficient from shear friction angles for the prediction of slip tendencies in the Tuy Hoa–Vung Tau region of Southern Vietnam. A dataset consisting of measured data of 355 fractured planes, striations, and unconformities in coastal areas as well as 239 offshore faults was analyzed based on the principles of statistical probability. As a result, 138 friction angles for the onshore and offshore faults were calculated based on shear fracture conjugate pairs. The goodness-of-fit test was used to define the probability distribution of the friction angles, which had a normal distribution. The acceptable average of friction angles for the onshore region with a reliability of more than 95% were in the range of 25.8–31.5°, which corresponds to frictional coefficients of 0.48–0.61. The acceptable average friction angles for the offshore region were relatively low at 23–31°, which corresponds to a frictional coefficient of 0.42–0.60. Owing to the heterogeneity of the fault system, the median value (19.12°) should be used as the lowest threshold value for slipping faults at all conditions. The recommended applicable average friction angles are 28.65° and 27° for the onshore and offshore regions, respectively. The estimation of the frictional coefficients is highly reliable, and it can be applied to other subsurface resource exploitation projects within the study area.


2020 ◽  
Vol 8 (10) ◽  
pp. 744
Author(s):  
Yu-Hsien Lin ◽  
Xian-Chen Li

A computational fluid dynamics (CFD)-based simulation using a finite volume code for a full-appendage DARPA (Defense Advanced Research Projects Agency) SUBOFF model was investigated with a sliding mesh model in a multi-zone fluid domain. Unsteady Reynolds Averaged Navier–Stokes (URANS) equations were coupled with a Menter’s shear stress transport (SST) k-ω turbulence closure based on the Boussinesq approximation. In order to simulate unsteady motions and capture unsteady interactions, the sliding mesh model was employed to simulate flows in the fluid domain that contains multiple moving zones. The pressure-based solver, semi-implicit method for the pressure linked equations-consistent (SIMPLEC) algorithm was employed for incompressible flows based on the predictor-corrector approach in a segregated manner. After the grid independence test, the numerical simulation was validated by comparison with the published experimental data and other numerical results. In this study, the capability of the CFD simulation with the sliding mesh model was well demonstrated to conduct the straight-line towing tests by analyzing hydrodynamic characteristics, viz. resistance, vorticity, frictional coefficients, and pressure coefficients.


Sign in / Sign up

Export Citation Format

Share Document