Assessment of UAV-based digital surface model and the effects of quantity and distribution of ground control points

2020 ◽  
Vol 42 (1) ◽  
pp. 65-83
Author(s):  
Guilherme Gomes Pessoa ◽  
André Caceres Carrilho ◽  
Gabriela Takahashi Miyoshi ◽  
Amilton Amorim ◽  
Mauricio Galo
UKaRsT ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 49
Author(s):  
Dian Wahyu Khaulan ◽  
Entin Hidayah ◽  
Gusfan Halik

The Digital Surface Model (DSM) is commonly used in studies on flood map modeling. The lack of accurate, high-resolution topography data has hindered flood modeling. The use of the Unmanned Aerial Vehicle (UAV) can help data acquisition with sufficient accuracy. This research aims to provide high-resolution DSM-generated maps by Ground Control Points (GCPs) settings. Improvement of the model's accuracy was pursued by distributing 20 GCPs along the edges of the study area. Agrisoft software was used to generate the DSM. The generated DSM can be used for various planning purposes. The model's accuracy is measured in Root Mean Square Error (RMSE) based on the generated DSM. The RMSE values are 0.488 m for x-coordinates and y-coordinates (horizontal direction) and 0.161 m for z-coordinates (vertical direction).


Author(s):  
Andri Suprayogi ◽  
Nurhadi Bashit

Large scale base map can be obtained by various methods, one of them is orthorectification process of remote sensing satellite imagery to eliminate the relief displacement caused by height variation of earth surface. To obtain a  map images with good quality,  it requires additional data such as sensor model in the form of rational polynomial coefficients (RPC), surface model data, and ground control points Satellite imageries with high resolution  file size are relatively large.  In order to process them,  high specification of hardwares were required. To overcome this by cutting only a portion of the images, based on certain study areas were suffer from of georeference lost so it would not be able to orthorectified. On the other hand,  in several remote sensing software such as ESA SNAP and Orfeo Toolbox (OTB)  subset or pixel extraction from satellite imagery,  preserve the imagery geometric sensor models. This research aimed at geometric accuracy of orthorectification carried out in a single scene of Pleiades Imagery within the Kepahiang Subdistrict, located at Kepahiang Regency, Bengkulu Province, by using DEMNAS and the imagery refined sensor mode, and ground control points taken using GPS Survey. Related with the raw imagery condition which consists of Panchromatic and multispectral bands, this study were separated to assembly, pan sharpening , and sensor model refinement stages prior to orthorectification carried out both in the original or full extent imagery and the result of subset extent imagery. After  these processses taken place, we measure the accuracy of each full and subset imagery.These procedures were carried out using Orfeo toolbox 6.6.0 in the Linux Mint 19 Operating system. From the process log, running time in total  were 7814.518  second for the full extent and 4321.95 seconds for the subset processess. And as a big data process, the total of full extent imageries was 83.15 GB  while the subset size  was  only 30.73 GB.  The relative accuracy of the full extent and its subset imagery were 0.431 meters. Accuracy of the  sensor model refinement process are  1.217 meters and 1.550 meters with GCP added, while the accuracu of  the orthorectifications results were  0.416 meters and 0.751 meters by using ICP.  Variation of execution time may caused by the data input size and complexity of the mathematical process carried out in each stages. Meanwhile,  the variation of accuracy may  caused by the check or control points placements above satellite Imagery which suffer from uncertainty when dealing with  the sub-pixel position or under 0.5 meters.


2020 ◽  
Vol 194 ◽  
pp. 05030
Author(s):  
Yin Yaqiu ◽  
Jiang Cunhao ◽  
Lv Jing ◽  
Wang Jie ◽  
Ju Xing ◽  
...  

Taking the Xiangwang bauxite mining of Xiaoyi City, Shanxi Province as the research object, the DJi “Wu”inspire2 model Unmanned aerial vehicle (UAV) was used to obtain the video data, image data and Ground control points (GCP) data of a typical pit in the study area. Based on the two kinds of data source (video data and image data), the Digital surface model (DSM) of the research area was acquired with or without ground control points through aerial triangulation and block adjustment. Using the DSM obtained by the two data source, the distribution of elevation, slope, slope direction, surface fluctuation and surface roughness was extracted and compared. Research shows that the DSM, acquired by the ContextCapture software without GCP, using video data obtained by aerial shooting around one interest point, can qualitatively reflect the topographic distribution of the land surface. The DSM got by the video data with the GCP can achieve the similar accuracy with the result obtained by image data, and the topographic information acquired by the two kinds of data source has highly similar characteristics in spatial and numerical distribution. It can be concluded through comparison and analysis of the topographical factors that steep slopes with complex topography and large elevation difference distributes in the northwest-central of the pit, of which northwest and southwest slopes can be easily eroded by wind and rain, so attention should be paid to slop stability monitoring and disaster prevention in this area. As a whole, the results show that video data obtained by UAV can not only reflect the dynamic changes of the land surface qualitatively, but also can describe the distribution of surface topography quantitatively through processing to get the DSM. It has great application potential in the field of disaster emergency monitoring and geological hazard risk assessment in mining areas.


2021 ◽  
Vol 62 (4) ◽  
pp. 38-47
Author(s):  
Long Quoc Nguyen ◽  

To evaluate the accuracy of the digital surface model (DSM) of an open-pit mine produced using photos captured by the unmanned aerial vehicle equipped with the post-processing dynamic satellite positioning technology (UAV/PPK), a DSM model of the Deo Nai open-pit coal mine was built in two cases: (1) only using images taken from UAV/PPK and (2) using images taken from UAV/PPK and ground control points (GCPs). These DSMs are evaluated in two ways: using checkpoints (CPs) and comparing the entire generated DSM with the DSM established by the electronic total station. The obtained results show that if using CPs, in case 1, the errors in horizontal and vertical dimension were 6.8 and 34.3 cm, respectively. When using two or more GCPs (case 2), the horizontal and vertical errors are at the centimetre-level (4.5 cm and 4.7 cm); if using the DSM comparison, the same accuracy as case 2 was also obtained.


Author(s):  
A.-M. Rosu ◽  
M. Assenbaum ◽  
Y. De la Torre ◽  
M. Pierrot-Deseilligny

Coastal sandy environments are extremely dynamic and require regular monitoring that can easily be achieved by using an unmanned aerial system (UAS) including a drone and a photo camera. The acquired images have low contrast and homogeneous texture. Using these images and with very few, if any, ground control points (GCPs), it is difficult to obtain a digital surface model (DSM) by classical correlation and automatic interest points determination approach. A possible response to this problem is to work with enhanced, contrast filtered images. To achieve this, we use and tune the free open-source software MicMac.


Author(s):  
M. L. Yeh ◽  
Y. T. Chou ◽  
L. S. Yang

The efficiency and high mobility of Unmanned Aerial Vehicle (UAV) made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV), general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.


2021 ◽  
Author(s):  
Thomas JB Dewez ◽  
Claire Rault ◽  
Bertrand Aunay

<p>Geographical Surveys now distribute online their historical aerial photographs. The batches of digital images, holding the appearance and relief of the forever gone landscape, can be processed with automated Structure-from-Motion (SFM) photogrammetric pipelines. Are the results trustworthy? In this communication, we report the results of exploratory tests performed with Agisoft Metashape on sets of 1978, ~1/27.000, vertical aerial photographs from IGN-France over la Réunion volcanic island in the Indian Ocean. Georeferencing deliberately used ground control points and check points collected on IGN's web mapping portal. Validation was obtained from lidar and photogrammetric acquisition of 2015.</p><p>First, our results show that scanned photographs do not strictly map camera coordinates to image coordinates from one file to the next. Photos are slightly shifted and rotated on each scan. The photogrammetric assumption of a single camera per batch of images is thus violated. A preprocessing step, automated with Python, locates fiducials, computes camera principal point, rotates and crops the image file to a unique image reference frame. This feature is absent from Agisoft Metashape when fiducial coordinates are unknown.</p><p>Second, in the photogrammetric pipeline, camera calibration parameters are deduced from matched sparse points. The sensitivity of the "align" function was explored. The smallest RMS errors were ±7.03m for 11 ground-control points and ±5.45m for 9 independent check points when setting Align quality to "high" and a 4-parameters camera model using focal length (f), eccentricity (cx, cy), one radial distortion parameter (K1). A higher number of parameters delivered no accuracy improvement and correlated parameters. Intensive random sampling of sparse points subsets conducted to stable estimates of focal length and eccentricity. Improving the robustness of focal length determination would require additional, oblique photographs, which was not the spirit of historical survey design and were never acquired in past surveys.</p><p>Third, collecting ground control points on https://geoportail.gouv.fr resulted in digital surface model elevation accuracy within +/- 3.34m (Median Absolute Deviation). Validation was computed on a 2015 lidar digital terrain model at 5m resolution on stable grounds. Scanning artefacts, probably due to variable scanning velocity of the digitizing head, introduced elevation variation stripes in Difference of DEM (DoD), parallel to the scanner direction. This pattern limits the detection of geomorphologically meaningful<strong> </strong>differences.</p><p>Fourth, a DoD between 2015-1978 for the Cirque de Salazie, in the north-east of La Réunion Island, highlighted landsliding masses active some time during the last 37 years and 13 cyclones. Beyond this proof of concept, archive aerial photographs in La Réunion go back until 1949 and covered the island twenty times. This time scale offers a welcome hindsight when producing landslide risk mitigation maps.</p><p>This work was published in open-access in</p><p>Rault, C., Dewez, T. J. B., and Aunay, B., 2020, Structure-from-Motion processing of aerial archive photographs: sensitivity analyses pave the way for quantifying geomorphological changes since 1978 in la Réunion island, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 773–780, https://doi.org/10.5194/isprs-annals-V-2-2020-773-2020, 2020.</p>


Author(s):  
M. L. Yeh ◽  
Y. T. Chou ◽  
L. S. Yang

The efficiency and high mobility of Unmanned Aerial Vehicle (UAV) made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV), general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.


2020 ◽  
Vol 12 (4) ◽  
pp. 501-509
Author(s):  
Nguyen Long ◽  
◽  
Le Thi Thu Ha ◽  
Tong Si Son ◽  
Kim Thi Thu Huong ◽  
...  

The use of lightweight Unmanned Aerial Vehicle with the aerial photogrammetry approach to construct the Digital Surface Model (DSM) has been effectively applied for various types of topography. However, the ability to carry out this approach for huge active open coal mines is insufficiently investigated, furthermore, the influences of topographical factors on the accuracy of DSM are ambiguous. This experiment attempts to apply the UAV method for the two active coal mines with the total area of 7.99 km2 , exploited at a range from -300 m to 300 m altitude to figure out the effect of topographic factors on the accuracy of DEM constructed from UAV images. A total of 972 UAV images and 17 ground control points have been coupled to construct DSM of the mines. Besides, 16 checking points located at different elevations are used to evaluate the accuracy of DEM and to define the influence. DEMs are generated with the maximum RMSE of 0.086 m, 0.099 m, and 0.170 m corresponding to X, Y, and Z dimensional errors. The results show the unclear correlation between the vertical accuracy of DEM and the relative elevation (R2=0.064), the general slope of the mines, and the number of ground control points using in the coal mines as well.


2018 ◽  
Vol 2 ◽  
pp. 535
Author(s):  
Maundri Prihanggo

<p>Saat ini, citra satelit resolusi sangat tinggi digunakan dalam berbagai macam aplikasi, terutama pemetaan skala besar. Sebelum dapat digunakan, citra satelit tersebut harus diorthorektifikasi terlebih dahulu. Data <em>Digital Surface Model </em>(DSM) dan <em>Ground Control Point</em> (GCP) adalah dua data utama yang diperlukan saat melakukan orthorektifikasi. Perbedaan data DSM yang digunakan akan menghasilkan perbedaan nilai ketelitian horizontal pada kedua citra tegak hasil orthorektifikasi. Pada penelitian ini digunakan dua jenis DSM yaitu SRTM dan Terrasar-X. Ketelitian vertikal dari SRTM adalah 90 m sedangkan ketelitian vertikal dari Terrasar-X adalah 12,5 m. Penelitian ini berlokasi di Wilayah Buli, Kabupaten Halmahera Timur, Provinsi Maluku. Terdapat tiga sensor citra satelit yang digunakan yaitu Pleiades, Quickbird dan Worldview-2 yang digunakan pada lokasi penelitian. Total GCP yang digunakan adalah 33 titik, tiap titiknya diukur dengan melakukan pengamatan geodetik dan memiliki ketelitian horizontal ≤15 cm dan ketelitian vertikal ≤30 cm. Ketelitian horizontal dari citra tegak satelit resolusi sangat tinggi diperoleh dengan melakukan uji terhadap Independent Check Point (ICP). Total ICP yang digunakan adalah 12 titik, tiap titik ICP diukur dengan metode dan standar yang sama dengan titik GCP. Ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data SRTM adalah 18,856 m sedangkan ketelitian horizontal dengan Circular Error (CE 90) dari citra tegak satelit menggunakan data Terrasar-X adalah 2.168 m . Hasil dari penelitian ini membuktikan bahwa ketelitian vertikal data DSM yang digunakan memberikan pengaruh pada citra tegak satelit hasil orthorektifikasi tersebut. Mengacu pada Peraturan Kepala BIG nomor 15 tahun 2014, citra tegak satelit hasil orthorektifikasi menggunakan data Terrasar-X sebagai DSM memenuhi ketelitian horizontal peta dasar kelas 3 skala 1:5.000 sedangkan citra tegak satelit hasil orthorektifikasi menggunakan data SRTM sebagai DSM tidak dapat memenuhi ketelitian horizontal peta dasar skala besar.</p><p><strong>Kata kunci:</strong> orthorektifikasi, DSM, ketelitian horizontal</p>


Sign in / Sign up

Export Citation Format

Share Document