topography data
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 48)

H-INDEX

19
(FIVE YEARS 4)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1790
Author(s):  
Wojciech Macek

This paper investigates the fracture surface topography of two steel and aluminum alloys subject to bending-torsion fatigue loadings, as well as their susceptibility to fatigue performance and failure mechanisms. Using fracture surface topography data analysis, elements with different geometries were elaborated. A correlation between the fractal dimension, other selected parameters of surface topography such as areal Sx, and fatigue loading conditions was found. Distinctions in particular regions of cracks were also recognized through proving the correctness and universality of the total fracture surface method. The influence of fatigue loading parameters on the surface topography of fatigue fractures was demonstrated. For the analyzed cases, results show that the fractal dimension and standard surface topography parameters represent a correlation between them and loading conditions. As a single parameter, the appropriate loading ratio cannot be outright calculated with fractal dimension, but can be estimated with some approximation, taking into account additional assumptions.


2021 ◽  
Vol 880 (1) ◽  
pp. 012029
Author(s):  
Arniza Fitri ◽  
Hao Chen ◽  
Li Yao ◽  
Ke-hong Zheng ◽  
Susarman ◽  
...  

Abstract Scouring problems faced in the Cimadur River especially near to the Citorek bridge abutments have become the major discussion by the local researchers and the local water resources manager in Banten Province. As an effort in reducing the scouring problem around the abutment of the Citorek bridge, a groundsill structure with specific design is going to be installed in Cimadur River at downstream of Citorek bridge. To make sure the optimal function of the structure, the stability of the groundsill structure in Cimadur River need to be evaluated. This study attempt to evaluate the stability of a groundsill structure from the occurrences of rolling and sliding at both normal and flood conditions. The eccentricity of the groundsill structure is also checked during normal and flood conditions to make sure the stability of the structure. The required data (which are consisting of detail description of the groundsill structure, cross section of the river, rainfall data, topography data and sediment/soil data) are observed in the field and obtained from P.T. Saeba Konsulindo. The data are further analysed to determine: 1) design water discharges for several return period, 2) forces acting to the groundsill structure and 3) stability of the groundsill structure in the river. The results showed that the groundsill structure are stable and safety again rolling and sliding occurrences where the safety factor (SF) for rolling and sliding are higher than critical coefficients of rolling and sliding (1.5). At normal water level, safety factors (SF) for rolling and sliding are 8.07>1.5 and 2.7>1.5, respectively, while at flood water level, SF for rolling and sliding are 5.61>1.5 and 1.88>1.5, respectively. Besides, the results also found that the groundsill is safety from eccentricity at both normal and flood conditions where the calculated coefficients of eccentricities are lower than critical coefficient of eccentricity which could cause rolling and sliding.


Author(s):  
Yannik E. Roell ◽  
Niels M. Jacobsen ◽  
Morten Graversgaard ◽  
Nele Lohrum ◽  
Amélie Beucher ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5096
Author(s):  
Przemysław Podulka

The metrology of so-called “engineering surfaces” is burdened with a substantial risk of both measurement and data analysis errors. One of the most encouraging issues is the definition of frequency-defined measurement errors. This paper proposes a new method for the suppression and reduction of high-frequency measurement errors from the surface topography data. This technique is based on comparisons of alternative types of noise detection procedures with the examination of profile (2D) or surface (3D) details for both measured and modelled surface topography data. In this paper, the results of applying various spline filters used for suppressions of measurement noise were compared with regard to several kinds of surface textures. For the purpose of the article, the influence of proposed approaches on the values of surface topography parameters (from ISO 25178 for areal and ISO 4287 for profile standards) was also performed. The effect of the distribution of some features of surface texture on the results of suppressions of high-frequency measurement noise was also closely studied. Therefore, the surface topography analysis with Power Spectral Density, Autocorrelation Function, and novel approaches based on the spline modifications or studies of the shape of an Autocorrelation Function was presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuta Ueno ◽  
Risa Nomura ◽  
Takahiro Hiraoka ◽  
Katsuhito Kinoshita ◽  
Mutsuko Ohara ◽  
...  

AbstractWe investigated the relation between corneal regular and irregular astigmatism in normal human eyes. In 951 eyes of 951 patients, corneal irregular astigmatism, such as asymmetry and higher-order irregularity components, was calculated using the Fourier harmonic analysis of corneal topography data within the central 3-mm zone of the anterior corneal surface. The eyes were classified by the type of corneal regular astigmatism into four groups; minimum (< 0.75 diopters), with-the-rule (WTR), against-the-rule (ATR), and oblique astigmatism. The mean age was significantly different among the four groups (P < 0.001); patients with WTR astigmatism were the youngest, followed by those with minimum, oblique, and ATR astigmatism. Significant inter-group differences were found among the four groups in asymmetry (P = 0.005) and higher-order irregularity components (P < 0.001); the largest was in eyes with oblique astigmatism, followed by ATR, WTR, and minimum astigmatism. The stepwise multiple regression analysis revealed that corneal regular astigmatism pattern significantly influenced the amount of corneal irregular astigmatism after controlling for confounding factors (P < 0.001). Corneal irregular astigmatism, such as asymmetry and higher order irregularity components, was the largest in eyes with oblique astigmatism, followed by those with ATR, WTR, and minimum astigmatism, even after adjustment for age of subjects.


2021 ◽  
Author(s):  
Ananyo Bhattacharya

&lt;p&gt;Dust particles and haze formation on the surface of Venus have been observed and studied using several independent techniques onboard Venus lander missions. A possibility of mineral haze formation in highlands is supported by observations of high reflectivity and low emissivity features from Pioneer Venus Orbiter and Magellan radar experiments, while Venera 13 and 14 spectrophotometer analysis yields appreciable aerosol extinction at the same altitudes. In this work, we present threshold parameters for dust lifting from 1 &amp;#956;m to 1 cm sized dust particles over the globe using emissivity and surface topography data provided by Magellan radar. The threshold wind speeds have been derived using theoretical and experimental models and compared with the in-situ measurements reported earlier. Haze formation is less likely to occur solely due to wind shear by micron and submicron sized particles. The entrainment process and properties of the boundary layer also contribute to variation in threshold wind speeds and particle transport.&lt;/p&gt;


2021 ◽  
Vol 13 (13) ◽  
pp. 2635
Author(s):  
Jinzhu Ji ◽  
James W. Head ◽  
Jianzhong Liu

The Orientale impact basin is the youngest and most well-preserved of the lunar multi-ring basins. The generally well-preserved ring structures and basin facies are distinctly anomalous in the southwestern quadrant; the outer Cordillera ring extends significantly outward, the Outer and Inner Rook mountain rings are more poorly developed and show anomalous characteristics, and the Montes Rook Formation varies widely from its characteristics elsewhere in the basin interior. Based on the gravity, image, and topography data, we confirmed that the southwest region of the Orientale basin represents the location of a pre-existing ~320 km rim–crest diameter peak–ring basin centered at 108.8°W, 28.4°S, and characterized by an ~170 km peak–ring diameter. We model the structure and morphology of this large pre-Orientale peak–ring basin (about one-third the diameter of Orientale) and show that its presence and negative relief had a distinctive influence on the development of the basin rings (disrupting the otherwise generally circular continuity and causing radial excursions in their locations) and the emplacement of ejecta (causing filling of the low region represented by the peak–ring basin, creating anomalous surface textures, and resulting in late stage ejecta movement in response to the pre-existing peak–ring basin topography. The location and preservation of the peak–ring basin Bouguer anomaly strongly suggest that the rim crest of the Orientale basin excavation cavity lies at or within the Outer Rook Mountain ring.


Shore & Beach ◽  
2021 ◽  
pp. 46-55
Author(s):  
Ethan Theuerkauf ◽  
C. Robin Mattheus ◽  
Katherine Braun ◽  
Jenny Bueno

Coastal storms are an important driver of geomorphic change along Great Lakes shorelines. While there is abundant anecdotal evidence for storm impacts in the region, only a handful of studies over the last few decades have quantified them and addressed system morphodynamics. Annual to seasonal lake-level fluctuations and declining winter-ice covers also influence coastal response to storms, yet relationships between hydrodynamics and geomorphology are poorly constrained. Given this, the Great Lakes region lags behind marine coasts in terms of predictive modeling of future coastal change, which is a necessary tool for proactive coastal management. To help close this gap, we conducted a year-long study at a sandy beach-dune system along the western shore of Lake Michigan, evaluating storm impacts under conditions of extremely high water level and absent shorefast ice. Drone-derived beach and dune topography data were used to link geomorphic changes to specific environmental conditions. High water levels throughout the year of study facilitated erosion during relatively minor wave events, enhancing the vulnerability of the system to a large storm in January 2020. This event occurred with no shorefast ice present and anomalously high winter water levels, resulting in widespread erosion and overwash. This resulted in 20% of the total accretion and 66% of the erosion documented at the site over the entire year. Our study highlights the importance of both antecedent and present conditions in determining Great Lakes shoreline vulnerability to storm impacts.


Geosphere ◽  
2021 ◽  
Author(s):  
Chelsea Scott ◽  
Minh Phan ◽  
Viswanath Nandigam ◽  
Christopher Crosby ◽  
J Ramon Arrowsmith

Topographic differencing measures landscape change by comparing multitemporal high-resolution topography data sets. Here, we focused on two types of topographic differencing: (1) Vertical differencing is the subtraction of digital elevation models (DEMs) that span an event of interest. (2) Three-dimensional (3-D) differencing measures surface change by registering point clouds with a rigid deformation. We recently released topo­graphic differencing in OpenTopography where users perform on-demand vertical and 3-D differencing via an online interface. OpenTopography is a U.S. National Science Foundation–funded facility that provides access to topographic data and processing tools. While topographic differencing has been applied in numerous research studies, the lack of standardization, particularly of 3-D differencing, requires the customization of processing for individ­ual data sets and hinders the community’s ability to efficiently perform differencing on the growing archive of topography data. Our paper focuses on streamlined techniques with which to efficiently difference data sets with varying spatial resolution and sensor type (i.e., optical vs. light detection and ranging [lidar]) and over variable landscapes. To optimize on-demand differencing, we considered algorithm choice and displacement resolution. The optimal resolution is controlled by point density, landscape characteristics (e.g., leaf-on vs. leaf-off), and data set quality. We provide processing options derived from metadata that allow users to produce optimal high-quality results, while experienced users can fine tune the parameters to suit their needs. We anticipate that the differencing tool will expand access to this state-of-the-art technology, will be a valuable educational tool, and will serve as a template for differencing the growing number of multitemporal topography data sets.


Sign in / Sign up

Export Citation Format

Share Document