Revisiting Service‐level Measurement for an Inventory System with Different Transport Modes

2007 ◽  
Vol 27 (3) ◽  
pp. 273-283 ◽  
Author(s):  
Wout Dullaert ◽  
Bert Vernimmen ◽  
El‐houssaine Aghezzaf ◽  
Birger Raa
10.5772/56859 ◽  
2013 ◽  
Vol 5 ◽  
pp. 41 ◽  
Author(s):  
Maria Elena Nenni ◽  
Massimiliano M. Schiraldi

As a means of avoiding stock-outs, safety stocks play an important role in achieving customer satisfaction and retention. However, traditional safety stock theory is based on the assumption of the immediate delivery of the ordered products, which is not a common condition in business-to-business contexts. Virtual safety stock theory was conceived to raise the service level by exploiting the potential time interval in the order-to-delivery process. Nevertheless, its mathematical complexity prevented this technique from being widely adopted in the industrial world. In this paper, we present a simple method to test virtual safety stock effectiveness through simulation in an inventory system using a base stock policy with periodic reviews and backorders. This approach can be useful for researchers as well as practitioners who want to model the behaviour of an inventory system under uncertain conditions and verify the opportunity for setting up a virtual safety stock on top of, or instead of, the traditional physical safety stock.


2015 ◽  
Vol 39 (4) ◽  
pp. 555-566 ◽  
Author(s):  
Achin Srivastav ◽  
Sunil Agrawal

This paper studies a multi-objective mixture inventory problem for a pharmaceutical distributor. The work starts with a discussion of a mixture inventory model and three objectives, namely the minimization of: 1) ordering and holding costs, 2) number of units that stockout and 3) frequency of stockout occasions. Multi-objective particle swarm optimization (MOPSO) is used to determine the non-dominated solutions and generate Pareto curves for the inventory system. Two variants of MOPSO are proposed, based on the selection of inertia weight. The performance of the proposed MOPSO algorithms is evaluated in comparison with two robust algorithms like non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective cuckoo search (MOCS). The metrics that are used for the performance measurement of the algorithms are error ratio, spacing and maximum spread. Furthermore, the technique of order preference by similarity to ideal solution (TOPSIS) is used to rank the non-dominated solutions and determine the best compromise solution among them. A factorial analysis develops the linear regression expressions of optimal cost, service level measures, lot size and safety stock factor for practitioners. Lastly, the results of the regression equations are compared using a MOPSO–TOPSIS approach and the validity of the developed equations are checked.


Sign in / Sign up

Export Citation Format

Share Document