STATE SPACE FORMULATION FOR GENERALIZED THERMOELASTICITY WITH ONE RELAXATION TIME INCLUDING HEAT SOURCES

1993 ◽  
Vol 16 (2) ◽  
pp. 163-180 ◽  
Author(s):  
Hany H. Sherief
2002 ◽  
Vol 80 (10) ◽  
pp. 1157-1174 ◽  
Author(s):  
M A Ezzat ◽  
A A Samaan ◽  
A Abd-El Bary

We introduce a magnetohydrodynamic model of a boundary-layer equation for a conducting viscous fluid. The state space approach is adopted for one-dimensional problems including heat sources with one relaxation time. The resulting formulation is applied to a problem for the whole space with a plane distribution of heat sources. The reflection method together with the solution obtained for the whole space is applied to a semi-space problem with a plane distribution of heat sources located inside the fluid. Numerical results for the velocity, temperature, and induced-magnetic- and induced-electric-field distributions are given and illustrated graphically for both problems. PACS No.: 47.65+a


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sunita Deswal ◽  
Kapil Kumar Kalkal

Magneto-thermoelastic interactions in an initially stressed isotropic homogeneous elastic half-space with two temperatures are studied using mathematical methods under the purview of the L-S model of linear theory of generalized thermoelasticity. The formalism deals with the state space approach with the purpose of counteracting the difficulties of handling the displacement potential functions. Of specific concern here is the propagation of waves owing to ramp type increase in temperature and load. The medium is considered to be permeated by a uniform magnetic field. The expressions for different field parameters such as displacement, temperature, strain, and stress in the physical domain are obtained by applying a numerical inversion technique. Results of some earlier workers have been deduced from the present formulation. Numerical work is also performed for a suitable material with the aim of illustrating the results.


2009 ◽  
Vol 87 (8) ◽  
pp. 867-878 ◽  
Author(s):  
Magdy A. Ezzat ◽  
A. S. El-Karamany ◽  
A.A. Bary

A model of the equations of generalized magneto-thermoelasticity for perfectly conducting isotropic media is given. The formulation is applied to the generalized thermoelasticity theories: Green–Naghdi of type II and type III as well as to the dynamic coupled theory. The state space approach is adopted for the solution of one-dimensional problems in the absence of heat sources with time-dependent heating on the boundary. The Laplace-transform technique is used. Numerical results are given and illustrated graphically employing numerical method for the inversion of the Laplace transforms. Comparisons are made with the results predicted by the three theories.


Author(s):  
Chung-Hao Wang

An analytical solution of the problem of a cylindrically anisotropic tube which contains a line dislocation is presented in this study. The state space formulation in conjunction with the eigenstrain theory is proved to be a feasible and systematic methodology to analyze a tube with the existence of dislocations. The state space formulation which expediently groups the displacements and the cylindrical surface traction can construct a governing differential matrix equation. By using Fourier series expansion and the well developed theory of matrix algebra, the asymmetrical solutions are not only explicit but also compact in form. The dislocation considered in this study is a kind of mixed dislocation which is the combination of edge dislocations and a screw dislocation and the dislocation line is parallel to the longitudinal axis of the tube. The degeneracy of the eigen relation and the technique to determine the inverse of a singular matrix are thoroughly discussed, so that the general solutions can be applied to the case of isotropic tubes, which is one of the novel features of this research. The results of isotropic problems, which are belong to the general solutions, are compared with the well-established expressions in the literature. The satisfied correspondences of these comparisons indicate the validness of this study. A cylindrically orthotropic tube is also investigated as an example and the numerical results for the displacements and tangential stress on the outer surface are displayed. The effects on surface stresses due to the existence of a dislocation appear to have a characteristic of localized phenomenon.


1991 ◽  
Vol 148 (2) ◽  
pp. 329-342 ◽  
Author(s):  
M. Prevosto ◽  
M. Olagnon ◽  
A. Benveniste ◽  
M. Basseville ◽  
G. Le Vey

2005 ◽  
Vol 50 (02) ◽  
pp. 175-196 ◽  
Author(s):  
EE LENG LAU ◽  
G. K. RANDOLPH TAN ◽  
SHAHIDUR RAHMAN

In the folklore of emerging markets, there is a popular belief that bubbles are inevitable. In this paper, our objective is to estimate a state-space model for rational bubbles in selected Asian economies with the aid of the Kalman Filter. For each economy, we derive a possible picture of the bubble formation process that is implied by the state-space formulation. The estimation is based on the rational valuation formula for stock prices. Our results provide a possible way of defining the presence of rational bubbles in the stock markets of Taiwan, Singapore, Korea, and Malaysia.


Sign in / Sign up

Export Citation Format

Share Document