scholarly journals A Spatio-Temporal Modeling Framework for Surveillance Data of Multiple Infectious Pathogens With Small Laboratory Validation Sets

2019 ◽  
Vol 114 (528) ◽  
pp. 1561-1573 ◽  
Author(s):  
Xueying Tang ◽  
Yang Yang ◽  
Hong-Jie Yu ◽  
Qiao-Hong Liao ◽  
Nikolay Bliznyuk
2020 ◽  
Author(s):  
Francois Rerolle ◽  
Emily Dantzer ◽  
Andrew A. Lover ◽  
John M. Marshall ◽  
Bouasy Hongvanthong ◽  
...  

AbstractAs countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on forest-going populations, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases in confirmed malaria case incidence in Lao People’s Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest-going populations on malaria transmission in the GMS.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francois Rerolle ◽  
Emily Dantzer ◽  
Andrew A Lover ◽  
John M Marshall ◽  
Bouasy Hongvanthong ◽  
...  

As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on reducing forest-related transmission, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases confirmed malaria case incidence in Lao People’s Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest activities on malaria transmission in the GMS.


2020 ◽  
Author(s):  
Yue Bai ◽  
Abolfazl Safikhani ◽  
George Michailidis

The fast transmission rate of COVID-19 worldwide has made this virus the most important challenge of year 2020. Many mitigation policies have been imposed by the governments at different regional levels (country, state, county, and city) to stop the spread of this virus. Quantifying the effect of such mitigation strategies on the transmission and recovery rates, and predicting the rate of new daily cases are two crucial tasks. In this paper, we propose a modeling framework which not only accounts for such policies but also utilizes the spatial and temporal information to characterize the pattern of COVID-19 progression. Specifically, a piecewise susceptible-infected-recovered (SIR) model is developed while the dates at which the transmission/recover rates change significantly are defined as "break points" in this model. A novel and data-driven algorithm is designed to locate the break points using ideas from fused lasso and thresholding. In order to enhance the forecasting power and to describe additional temporal dependence among the daily number of cases, this model is further coupled with spatial smoothing covariates and vector auto-regressive (VAR) model. The proposed model is applied to several U.S. states and counties, and the results confirm the effect of "stay-at-home orders" and some states' early "re-openings" by detecting break points close to such events. Further, the model performed satisfactorily short-term forecasts of the number of new daily cases at regional levels by utilizing the estimated spatio-temporal covariance structures. Finally, some theoretical results and empirical performance of the proposed methodology on synthetic data are reported which justify the good performance of the proposed method.


2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


2012 ◽  
Vol 204-208 ◽  
pp. 2721-2725
Author(s):  
Hua Ji Zhu ◽  
Hua Rui Wu

Village land continually changes in the real world. In order to keep the data up-to-date, data producers need update the data frequently. When the village land data are updated, the update information must be dispensed to the end-users to keep their client-databases current. In the real world, village land changes in many forms. Identifying the change type of village land (i.e. captures the semantics of change) and representing them in the data world can help end-users understand the change commonly and be convenient for end-users to integrate these change information into their databases. This work focuses on the model of the spatio-temporal change. A three-tuple model CAR for representing the spatio-temporal change is proposed based on the village land feature set before change and the village land feature set after change, change type and rules. In this model, the C denotes the change type. A denotes the attribute set; R denotes the judging rules of change type. The rule is described by the IF-THEN expressions. By the operations between R and A, the C is distinguished. This model overcomes the limitations of current methods. And more, the rules in this model can be easy realized in computer program.


2008 ◽  
Vol 41 (1) ◽  
pp. 204-216 ◽  
Author(s):  
T. Xiang ◽  
M.K.H. Leung ◽  
S.Y. Cho

2021 ◽  
pp. 101822
Author(s):  
Naresh Neupane ◽  
Ari Goldbloom-Helzner ◽  
Ali Arab

Sign in / Sign up

Export Citation Format

Share Document