An Efficient Derivative-Free Method for the Solution of Systems of Equations

Author(s):  
Changbum Chun ◽  
Beny Neta
2020 ◽  
Vol 3 (1) ◽  
pp. 43-49
Author(s):  
M K Dauda

In this study, a fully derivative-free method for solving large scale nonlinear systems of equations via memoryless DFP update is presented. The new proposed method is an enhanced DFP (Davidon-FletcherPowell) update which is matrix and derivative free thereby require low memory storage. Under suitable conditions, the proposed method converges globally. Numerical comparisons using a set of large-scale test problems showed that the proposed method is efficient.


Author(s):  
Alessandra Papini ◽  
Margherita Porcelli ◽  
Cristina Sgattoni

AbstractWe present a derivative-free method for solving systems of nonlinear equations that belongs to the class of spectral residual methods. We will show that by endowing a previous version of the algorithm with a suitable new linesearch strategy, standard global convergence results can be attained under mild general assumptions. The robustness of the new method is therefore potentially improved with respect to the previous version as shown by the reported numerical experiments.


Author(s):  
Sunil Kumar ◽  
Deepak Kumar ◽  
Janak Raj Sharma ◽  
Ioannis K. Argyros

Abstract Many optimal order multiple root techniques, which use derivatives in the algorithm, have been proposed in literature. Many researchers tried to construct an optimal family of derivative-free methods for multiple roots, but they did not get success in this direction. With this as a motivation factor, here, we present a new optimal class of derivative-free methods for obtaining multiple roots of nonlinear functions. This procedure involves Traub–Steffensen iteration in the first step and Traub–Steffensen-like iteration in the second step. Efficacy is checked on a good number of relevant numerical problems that verifies the efficient convergent nature of the new methods. Moreover, we find that the new derivative-free methods are just as competent as the other existing robust methods that use derivatives.


2019 ◽  
Vol 28 (1) ◽  
pp. 19-26
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
SANTHOSH GEORGE ◽  

We present the local as well as the semi-local convergence of some iterative methods free of derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Holder continuous hypotheses. The results are of theoretical and practical interest. In particular the method is compared favorably ¨ to other methods using concrete numerical examples to solve systems of equations containing a nondifferentiable term.


Author(s):  
Sandra Buhmiler ◽  
Sanja Rapajic ◽  
Milan Lukic ◽  
Slavica Medic ◽  
Natasa Durakovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document