The influence of high salt stress on starch, sucrose and degradative enzymes of twoglycine maxvarieties that differ in salt tolerance

1985 ◽  
Vol 8 (3) ◽  
pp. 199-209 ◽  
Author(s):  
G. Rathert
2020 ◽  
Vol 61 (5) ◽  
pp. 882-896
Author(s):  
Wenbin Ye ◽  
Taotao Wang ◽  
Wei Wei ◽  
Shuaitong Lou ◽  
Faxiu Lan ◽  
...  

Abstract Spartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used Pacific Biosciences (PacBio) full-length single-molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt gradient experiments. High-quality unigenes, transcription factors, non-coding RNA and Spartina-specific transcripts were identified. Co-expression network analysis found that protein kinase-encoding genes (SaOST1, SaCIPK10 and SaLRRs) are hub genes in the salt tolerance regulatory network. High salt stress induced the expression of transcription factors but repressed the expression of long non-coding RNAs. The Spartina transcriptome is closer to rice than Arabidopsis, and a higher proportion of transporter and transcription factor-encoding transcripts have been found in Spartina. Transcriptome analysis showed that high salt stress induced the expression of carbohydrate metabolism, especially cell-wall biosynthesis-related genes in Spartina, and repressed its expression in rice. Compared with rice, high salt stress highly induced the expression of stress response, protein modification and redox-related gene expression and greatly inhibited translation in Spartina. High salt stress also induced alternative splicing in Spartina, while differentially expressed alternative splicing events associated with photosynthesis were overrepresented in Spartina but not in rice. Finally, we built the SAPacBio website for visualizing full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes and alternative splicing events in Spartina. Overall, this study suggests that the salt tolerance mechanism in Spartina is different from rice in many aspects and is far more complex than expected.


2021 ◽  
Author(s):  
Chengjian Jiang ◽  
Xinghua Cai ◽  
Huijie Sun ◽  
Huashan Bai ◽  
Yanyi Chen ◽  
...  

A novel strain named Meyerozyma guilliermondii GXDK6 was provided in this work, which was confirmed to survive independently under high salt stress (12% NaCl) or co-stress condition of strong acid (pH 3.0) and high salts (10% NaCl) without sterilization. Its survival mechanism under high salt stress was revealed by integrated omics for the first time. Whole-genome analysis showed that 14 genes (e.g., GPD1 and FPS1) of GXDK6 relevant to salt tolerance were annotated and known to belong to various salt-resistant mechanisms (e.g., regulation of cell signal transduction and glycerol metabolism controls). Transcriptome sequencing results indicated that 1220 genes (accounting for 10.15%) of GXDK6 were differentially transcribed (p < 0.05) when GXDK6 growth was under 10% stress for 16 h, including important novel salt-tolerant-related genes (e.g., RTM1 and YHB1). Proteomics analysis demonstrated that 1005 proteins (accounting for 27.26%) of GXDK6 were differentially expressed (p < 0.05) when GXDK6 was stressed by 10% NaCl. Some of the differentially expressed proteins were defined as the novel salt-tolerant related proteins (e.g., sugar transporter STL1 and NADPH-dependent methylglyoxal reductase). Metabolomic analysis results showed that 63 types of metabolites (e.g., D-mannose, glycerol and inositol phosphate) of GXDK6 were up- or downregulated when stressed by 10% NaCl. Among them, D-mannose is one of the important metabolites that could enhance the salt-tolerance survival of GXDK6.


2019 ◽  
Author(s):  
Wenbin Ye ◽  
Taotao Wang ◽  
Wei Wei ◽  
Shuaitong Lou ◽  
Faxiu Lan ◽  
...  

ABSTRACTSpartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used PacBio full-length single molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt-gradient experiments (0, 350, 500 and 800 mM NaCl). We systematically analyzed the gene expression diversity and deciphered possible roles of ion transporters, protein kinases and photosynthesis in salt tolerance. Moreover, the co-expression network analysis revealed several hub genes in salt stress regulatory networks, including protein kinases such as SaOST1, SaCIPK10 and three SaLRRs. Furthermore, high salt stress affected the gene expression of photosynthesis through down-regulation at the transcription level and alternative splicing at the post-transcriptional level. In addition, overexpression of two Spartina salt-tolerant genes SaHSP70-I and SaAF2 in Arabidopsis significantly promoted the salt tolerance of transgenic lines. Finally, we built the SAPacBio website for visualizing the full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes, and alternative splicing events in Spartina. Overall, this study sheds light on the high salt tolerance mechanisms of monocotyledonous-halophyte and demonstrates the potential of Spartina genes for engineering salt-tolerant plants.


2018 ◽  
Vol 254 ◽  
pp. 151-156 ◽  
Author(s):  
Wenming Zhang ◽  
Junru Zhu ◽  
Xinggui Zhu ◽  
Meng Song ◽  
Ting Zhang ◽  
...  

FEBS Letters ◽  
2006 ◽  
Vol 580 (30) ◽  
pp. 6783-6788 ◽  
Author(s):  
Koji Yamaguchi ◽  
Yoshihiro Takahashi ◽  
Thomas Berberich ◽  
Akihiko Imai ◽  
Atsushi Miyazaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document