Diurnal rhythmicity of root iron reduction in soybean as affected by various light regimes

1994 ◽  
Vol 17 (12) ◽  
pp. 2193-2202 ◽  
Author(s):  
W. Bart Stevens ◽  
Von D. Jolley ◽  
Neil C. Hansen
2018 ◽  
Author(s):  
Matthew F. Kirk ◽  
◽  
Qusheng Jin ◽  
Theodore M. Flynn ◽  
Lydia H. Zeglin

Chemosphere ◽  
2021 ◽  
pp. 130983
Author(s):  
Yue Lu ◽  
Yingju Hu ◽  
Lin Tang ◽  
Qingqing Xie ◽  
Qian Liu ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Janice L. Atkins ◽  
Luke C. Pilling ◽  
Christine J. Heales ◽  
Sharon Savage ◽  
Chia-Ling Kuo ◽  
...  

Background: Brain iron deposition occurs in dementia. In European ancestry populations, the HFE p.C282Y variant can cause iron overload and hemochromatosis, mostly in homozygous males. Objective: To estimated p.C282Y associations with brain MRI features plus incident dementia diagnoses during follow-up in a large community cohort. Methods: UK Biobank participants with follow-up hospitalization records (mean 10.5 years). MRI in 206 p.C282Y homozygotes versus 23,349 without variants, including T2 * measures (lower values indicating more iron). Results: European ancestry participants included 2,890 p.C282Y homozygotes. Male p.C282Y homozygotes had lower T2 * measures in areas including the putamen, thalamus, and hippocampus, compared to no HFE mutations. Incident dementia was more common in p.C282Y homozygous men (Hazard Ratio HR = 1.83; 95% CI 1.23 to 2.72, p = 0.003), as was delirium. There were no associations in homozygote women or in heterozygotes. Conclusion: Studies are needed of whether early iron reduction prevents or slows related brain pathologies in male HFE p.C282Y homozygotes.


Author(s):  
Daria Boglaienko ◽  
Odeta Qafoku ◽  
Ravi K. Kukkadapu ◽  
Libor Kovarik ◽  
Yelena P. Katsenovich ◽  
...  

Enhanced TcO4− reduction by metallic Fe0 in the presence of particulate and structural Si. Rhythmical precipitation of dissolved iron leads to formation of layered structures related to geological phenomena such as orbicular rocks and Liesegang rings.


2021 ◽  
Author(s):  
Gregory R. Cawthray ◽  
Matthew D. Denton ◽  
Michael A. Grusak ◽  
Michael W. Shane ◽  
Erik J. Veneklaas ◽  
...  
Keyword(s):  

2002 ◽  
Vol 46 (1-2) ◽  
pp. 55-60 ◽  
Author(s):  
R. Yamamoto-Ikemoto ◽  
T. Komori ◽  
S. Matsui

Iron oxidation and reduction were examined using the activated sludge from a municipal plant. Iron contents of the activated sludge were 1–2%. Iron oxidation rates were correlated with the initial iron concentrations. Iron reducing rates could be described by the Monod equation. The effects of iron reducing bacteria on sulfate reduction, denitrification and poly-P accumulation were examined. Iron reduction suppressed sulfate reduction by competing with hydrogen produced from protein. Denitrification was outcompeted with iron reduction and sulfate reduction. These phenomena could be explained thermodynamically. Poly-P accumulation was also suppressed by denitrification. The activity of iron reduction was relatively high.


Sign in / Sign up

Export Citation Format

Share Document