Effect of counter-ions on the solution conformation and adsorption behaviors of comb-like polycarboxylates on calcium carbonate

2019 ◽  
Vol 40 (12) ◽  
pp. 1804-1812 ◽  
Author(s):  
Qian Zhang ◽  
Qianping Ran ◽  
Xin Shu ◽  
Yong Yang ◽  
Cheng Yu
Soil Research ◽  
1985 ◽  
Vol 23 (3) ◽  
pp. 429 ◽  
Author(s):  
H Farrah ◽  
J Slavek ◽  
WF Pickering

The ability of individual soil components to adsorb fluoride ions from dilute solutions (1-12 mg L-1 F-), at different pH values, has been investigated. No significant uptake was detected using substrates such as calcite, hydrous manganese(1v) oxide, cryptomelane, �-MnO2, pyrolusite, silica or silica gel, over the pH range 3-8 (for calcite, 6-9). The sorption of F- by calcite and humic acids at higher solution levels (up to 200 mg L-1) was also examined. Uptake by CaCO3 was observed when [F-] was >7 x 10-4 mol L-1, with the moles retained (pH -8.5) being approximately 1.6[F-]2. The amount of F removed increased on lowering the pH or on adding Ca2+, and it is proposed that the overall reaction is described by the equation CaCO3(S) + 2F- <=>CaF2(S) + CO23-. Two humic acid samples adsorbed increasing amounts of F- as the pH was lowered below 6.5, and increasing amounts of A1 and fluorocomplexes were detected in solution. The amount sorbed (mol kg-', at pH 5.5-6) varied with ash content and equalled either 16[F-]0.64 or 60[F-1. The major interaction appears to be HF attack on aluminosilicates in the ash fraction, with lesser contributions from sorption on calcium compounds and interaction with the counter-ions associated with the humic acid functional groups (e.g. Ca2+, Al3+, Fe3+).


2013 ◽  
Vol 295-298 ◽  
pp. 1321-1326 ◽  
Author(s):  
Kun Wu ◽  
Ting Liu ◽  
Jun Ming Peng

This study investigates the adsorption characteristics of As(V) onto the Fe-based backwashing sludge (FBBS), which was produced in the Fe(II) removal process. FBBS exhibits rough surfaces and shows high BET surface area of 148.41 m2/g. According to the results of EDS and XRD, the main constituents include sulfate inter-layered Fe hydroxide [Fe(SO4)OH], ferric oxhydroxide (γ-FeOOH), quartz (SiO2), and calcium carbonate (CaCO3). The adsorption kinetics data were well described by the Elovich model (r2 = 0.993), indicating the highly heterogeneous adsorption. The maximum adsorption capacity of As(V) increased from 40.04 to 88.76 mg/g as temperatures increased from 298 to 318 K, suggesting an endothermic process. The removal of As(V) was inhibited with elevated solution pH, especially from pH 7.0 to pH 10.0. Moreover, the removal of As(V) was enhanced with an increase in ion strength (0.01-1 M NaNO3), implying that the adsorption of As(V) was mainly through inner-sphere complexes mechanism.


Author(s):  
S. Q. Xiao ◽  
S. Baden ◽  
A. H. Heuer

The avian eggshell is one of the most rapidly mineralizing biological systems known. In situ, 5g of calcium carbonate are crystallized in less than 20 hrs to fabricate the shell. Although there have been much work about the formation of eggshells, controversy about the nucleation and growth mechanisms of the calcite crystals, and their texture in the eggshell, still remain unclear. In this report the microstructure and microchemistry of avian eggshells have been analyzed using transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS).Fresh white and dry brown eggshells were broken and fixed in Karnosky's fixative (kaltitanden) for 2 hrs, then rinsed in distilled H2O. Small speckles of the eggshells were embedded in Spurr medium and thin sections were made ultramicrotome.The crystalline part of eggshells are composed of many small plate-like calcite grains, whose plate normals are approximately parallel to the shell surface. The sizes of the grains are about 0.3×0.3×1 μm3 (Fig.l). These grains are not as closely packed as man-made polycrystalline metals and ceramics, and small gaps between adjacent grains are visible indicating the absence of conventional grain boundaries.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (5) ◽  
pp. 53-61 ◽  
Author(s):  
PATRICK HUBER ◽  
SYLVIE NIVELON ◽  
PATRICE NORTIER

Calcium carbonate scaling often is a critical problem for recycled board mills that have closed water circuits. The objective of this study was to determine local scaling risks throughout the production process. To predict scaling potential, we calculated several saturation indexes, based on speciation determined from detailed water analyses. Calculated scaling trends are in accordance with observed dissolution and precipitation of calcium carbonate in the process, when considering local aeration phenomena. The importance of volatile fatty acids (resulting from anaerobic bacterial activity) in calco-carbonic equilibriums is discussed, and taken into account in the speciation calculation. We also demonstrate the need to measure inorganic carbon instead of alkalinity in such conditions. This makes typical scaling indexes, such as the Ryznar Stability Index, irrelevant to predict scaling risk in closed circuit conditions; thus, it is necessary to use general speciation methods, as described in this paper.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 595-602
Author(s):  
ALISHA GIGLIO ◽  
VLADIMIROS G. PAPANGELAKIS ◽  
HONGHI TRAN

The formation of hard calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in the green liquor exceeds its solubility. While the solubility of CaCO3 in water is well known, it is not so in the highly alkaline green liquor environment. A systematic study was conducted to determine the solubility of CaCO3 in green liquor as a function of temperature, total titratable alkali (TTA), causticity, and sulfidity. The results show that the solubility increases with increased temperature, increased TTA, decreased causticity, and decreased sulfidity. The new solubility data was incorporated into OLI (a thermodynamic simulation program for aqueous salt systems) to generate a series of CaCO3 solubility curves for various green liquor conditions. The results help explain how calcite scale forms in green liquor handling systems.


2017 ◽  
Vol 137 (9) ◽  
pp. 536-541
Author(s):  
Tomohiro Kawashima ◽  
Tomohiro Yamada ◽  
Yoshinobu Murakami ◽  
Masayuki Nagao ◽  
Sou Ozaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document