Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips

Author(s):  
Ephesus Olusoji Fatunmbi ◽  
Sulyman O. Salawu
2020 ◽  
Vol 16 (6) ◽  
pp. 1475-1496
Author(s):  
A. Roja ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara

PurposeMiniaturization with high thermal performance and lower cost is one of the advanced developments in industrial science chemical and engineering fields including microheat exchangers, micro mixers, micropumps, cooling microelectro mechanical devices, etc. In addition to this, the minimization of the entropy is the utilization of the energy of thermal devices. Based on this, in the present investigation, micropolar nanofluid flow through an inclined channel under the impacts of viscous dissipation and mixed convection with velocity slip and temperature jump has been numerically studied. Also the influence of magnetism and radiative heat flux is used.Design/methodology/approachThe nonlinear system of ordinary differential equations are obtained by applying suitable dimensionless variables to the governing equations, and then the Runge–Kutta–Felhberg integration scheme is used to find the solution of velocity and temperature. Entropy generation and Bejan number are calculated via using these solutions.FindingsIt is established to notice that the entropy generation can be improved with the aspects of viscous dissipation, magnetism and radiative heat flux. The roles of angle of inclination (α), Eckert number (Ec), Reynolds number (Re), thermal radiation (Rd), material parameter (K),  slip parameter (δ), microinertial parameter (aj), magnetic parameter (M), Grashof number (Gr) and pressure gradient parameter (A) are demonstrated. It is found that the angle of inclination and Grashof number enhances the entropy production while it is diminished with material parameter and magnetic parameter.Originality/valueElectrically conducting micropolar nanofluid flow through an inclined channel subjected to the friction irreversibility with temperature jump and velocity slip under the influence of radiative heat flux has been numerically investigated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Rooman ◽  
Muhammad Asif Jan ◽  
Zahir Shah ◽  
Poom Kumam ◽  
Ahmed Alshehri

AbstractThe entropy generation for a reactive Williamson nanofluid flow past a vertical Riga system is the subject of this article. The effects of MHD, thermophoresis, nonlinear heat radiation and varying heat conductivity are modeled into the heat equation in the established model. Suitable similarity transformations are examined to bring down the partial differential equations into ordinary differential equations. The Homotopy analysis approach is used to solve the dimensionless transport equations analytically. The graphic information of the various parameters that emerged from the model is effectively collected and deliberated. The temperature field expands with thermophoresis, Brownian motion and temperature ratio parameters as the modified Hartmann number forces an increase in velocity, according to the findings of this analysis. With the increase in the fluid material terms, the entropy generation and Bejan number increase. Riga plate has numerous applications in improving the thermo-physics features of a fluid, the value of magnetic field embraces an important role in fluid mechanics. An external electric field can be used to control flow in weak electrically conductive fluids. The Riga plate is one of the devices used in this regard. It’s a device that creates electromagnetic fields. They produce the Lorentz force which is a force that directs fluid flow. The authors have discussed the entropy optimization for a reactive Williamson nanofluid flow past a vertical Riga plate is addressed. This is the first investigation on mass and heat transfer flow that the authors are aware of, and no similar work has yet been published in the literature. A thorough mathematical examination is also required to demonstrate the model’s regularity. The authors believe that the results acquired are novel and have not been plagiarized from any other sources.


Author(s):  
Anber Saleem ◽  
Wajiha Sabih ◽  
Sohail Nadeem ◽  
Mehdi Ghalambaz ◽  
Alibek Issakhov

2020 ◽  
Vol 17 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Mohamed Almakki ◽  
Hiranmoy Mondal ◽  
Precious Sibanda

Purpose This paper aims to investigate entropy generation in an incompressible magneto-micropolar nanofluid flow over a nonlinear stretching sheet. The flow is subjected to thermal radiation and viscous dissipation. The energy equation is extended by considering the impact of the Joule heating term because of an imposed magnetic field. Design/methodology/approach The flow, heat and mass transfer model are solved numerically using the spectral quasilinearization method. An analysis of the performance of this method is given. Findings It is found that the method is robust, converges fast and gives good accuracy. In terms of the physically significant results, the authors show that the irreversibility caused by the thermal diffusion the dominants other sources of entropy generation and the surface contributes significantly to the total irreversibility. Originality/value The flow is subjected to a combination of a buoyancy force, viscous dissipation, Joule heating and thermal radiation. The flow equations are solved numerically using the spectral quasiliearization method. The impact of a range of physical and chemical parameters on entropy generation, velocity, angular velocity, temperature and concentration profiles are determined. The current results may help in industrial applicants. The present problem has not been considered elsewhere.


2021 ◽  
pp. 845-866
Author(s):  
Zachariah Mbugua MBURU ◽  
Sabyasachi MONDAL ◽  
Precious SİBANDA ◽  
Ramprakash SHARMA

Sign in / Sign up

Export Citation Format

Share Document