Entropy Generation for MHD Maxwell Nanofluid Flow Past a Porous and Stretching Surface with Dufour and Soret Effects

Author(s):  
Muhammad Jawad ◽  
Anwar Saeed ◽  
Taza Gul
Author(s):  
Amar B. Patil ◽  
Vishwambhar S. Patil ◽  
Pooja P. Humane ◽  
Nalini S. Patil ◽  
Govind R. Rajput

The present work deals with chemically reacting unsteady magnetohydrodynamic Maxwell nanofluid flow past an inclined permeable stretching surface embedded in a porous medium with thermal radiation. The formulated governing partial differential equations conveying the flow model of Maxwell with Buongiorno modeled nanofluid is transformed into the system of highly non-linear ordinary differential equations via suitable similarity transformations; those equations are transmuted into an initial value problem and then solved numerically by a shooting approach with Runge–-Kutta fourth-order schema. To obtain the physical insight of the flow situation, the influence of associated parameters on the velocity, temperature, and concentration profiles is sketched graphically with the aid of MATLAB software. Furthermore, engineering quantities of interest are interpreted graphically. The computed numerical results are compared to estimate the validity of the achieved results; it has been found out that the computed results are highly accurate. The impact of the Maxwell parameter and inclination angle of the sheet on the velocity field is observed in decaying. Both thermal and solutal energy transport are progressive in nature as the Maxwell parameter and thermophoresis parameter grows, and a reverse trend is observed for Prandtl number.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Rooman ◽  
Muhammad Asif Jan ◽  
Zahir Shah ◽  
Poom Kumam ◽  
Ahmed Alshehri

AbstractThe entropy generation for a reactive Williamson nanofluid flow past a vertical Riga system is the subject of this article. The effects of MHD, thermophoresis, nonlinear heat radiation and varying heat conductivity are modeled into the heat equation in the established model. Suitable similarity transformations are examined to bring down the partial differential equations into ordinary differential equations. The Homotopy analysis approach is used to solve the dimensionless transport equations analytically. The graphic information of the various parameters that emerged from the model is effectively collected and deliberated. The temperature field expands with thermophoresis, Brownian motion and temperature ratio parameters as the modified Hartmann number forces an increase in velocity, according to the findings of this analysis. With the increase in the fluid material terms, the entropy generation and Bejan number increase. Riga plate has numerous applications in improving the thermo-physics features of a fluid, the value of magnetic field embraces an important role in fluid mechanics. An external electric field can be used to control flow in weak electrically conductive fluids. The Riga plate is one of the devices used in this regard. It’s a device that creates electromagnetic fields. They produce the Lorentz force which is a force that directs fluid flow. The authors have discussed the entropy optimization for a reactive Williamson nanofluid flow past a vertical Riga plate is addressed. This is the first investigation on mass and heat transfer flow that the authors are aware of, and no similar work has yet been published in the literature. A thorough mathematical examination is also required to demonstrate the model’s regularity. The authors believe that the results acquired are novel and have not been plagiarized from any other sources.


2021 ◽  
Vol 16 (1) ◽  
pp. 89-96
Author(s):  
Rizwan Akhtar ◽  
Muhammad Awais ◽  
Muhammad Asif Zahoor Raja ◽  
M. N. Abrar ◽  
Sayyar Ali Shah ◽  
...  

This study has been managed for the investigation of entropy generation of inclined magnetic field (MG) on the Jeffery nanofluid flow on a stretching surface containing viscous dissipation. Heat generation or absorption effects are likewise considered on the magnetohydromagnetic flow problem and electric field is considered negligible. The boundary layer approach is incorporated for simplification of the proposed governing equations in which the target of analysis is focused near the surface of the fluidic problem. The concept of dimensionless parameters are used for simplification of the proposed system which overcomes the complexity of the problem. The relaxation and retardation times are also considered for the non-Newtonian Jeffrey fluid model for better analysis of the entropy generation of inclined MG on the Jeffery nanofluid flow on a stretching surface containing viscous dissipation. The strength of analytical homotopy analysis approach is employed for finding the solutions of the proposed fluidic system in terms of energy, momentum and concentration which is effective in the spatial domain. Graphical explanation for flow parameters have been incorporated. The tabular description is given for the convergence analysis and comparison of velocity gradient at the sheet surface f″ (0) for analytical solution (HAM) computed in this manuscript along with the numerical solution. The aim of second law analysis can be achieved by increasing the magnitude of the finite different temperature parameter. The current study is also described for Newtonian fluid as a special case of our study. Stream lines patterns are also provided for both Newtonian and non-Newtonian fluid models.


Sign in / Sign up

Export Citation Format

Share Document