Solving vector interval-valued optimization problems with infinite interval constraints via integral-type penalty function

Optimization ◽  
2021 ◽  
pp. 1-19
Author(s):  
Xinqiang Qian ◽  
Kai-Rong Wang ◽  
Xiao-Bing Li

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Haijun Wang ◽  
Huihui Wang

AbstractIn this paper, we study the duality theorems of a nondifferentiable semi-infinite interval-valued optimization problem with vanishing constraints (IOPVC). By constructing the Wolfe and Mond–Weir type dual models, we give the weak duality, strong duality, converse duality, restricted converse duality, and strict converse duality theorems between IOPVC and its corresponding dual models under the assumptions of generalized convexity.



Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.



2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Minggang Dong ◽  
Ning Wang ◽  
Xiaohui Cheng ◽  
Chuanxian Jiang

Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE) for constrained optimization problems (COPs). More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.



2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Zhensheng Yu ◽  
Jinhong Yu

We present a nonmonotone trust region algorithm for nonlinear equality constrained optimization problems. In our algorithm, we use the average of the successive penalty function values to rectify the ratio of predicted reduction and the actual reduction. Compared with the existing nonmonotone trust region methods, our method is independent of the nonmonotone parameter. We establish the global convergence of the proposed algorithm and give the numerical tests to show the efficiency of the algorithm.



Author(s):  
Jing Qiu ◽  
Jiguo Yu ◽  
Shujun Lian

In this paper, we propose a new non-smooth penalty function with two parameters for nonlinear inequality constrained optimization problems. And we propose a twice continuously differentiable function which is smoothing approximation to the non-smooth penalty function and define the corresponding smoothed penalty problem. A global solution of the smoothed penalty problem is proved to be an approximation global solution of the non-smooth penalty problem. Based on the smoothed penalty function, we develop an algorithm and prove that the sequence generated by the algorithm can converge to the optimal solution of the original problem.



Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1203
Author(s):  
Guo ◽  
Ye ◽  
Zhao ◽  
Liu

In this paper, we present the gH-symmetrical derivative of interval-valued functions andits properties. In application, we apply this new derivative to investigate the Karush–Kuhn–Tucker(KKT) conditions of interval-valued optimization problems. Meanwhile, some examples are workedout to illuminate the obtained results.



Sign in / Sign up

Export Citation Format

Share Document