A study on approximate controllability of non-autonomous evolution system with nonlocal conditions using sequence method

Optimization ◽  
2021 ◽  
pp. 1-21
Author(s):  
Haide Gou ◽  
Yongxiang Li
2020 ◽  
Vol 18 (1) ◽  
pp. 529-539
Author(s):  
Xianghu Liu

Abstract The aim of this study is to investigate the finite approximate controllability of certain Hilfer fractional evolution systems with nonlocal conditions. To achieve this, we first transform the mild solution of the Hilfer fractional evolution system into a fixed point problem for a condensing map. Then, by using the topological degree approach, we present sufficient conditions for the existence and uniqueness of the solution of the Hilfer fractional evolution systems. Using the variational approach, we obtain sufficient conditions for the finite approximate controllability of semilinear controlled systems. Finally, an example is provided to illustrate main results.


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Alka Chadha ◽  
Rathinasamy Sakthivel ◽  
Swaroop Nandan Bora

In this paper, we study the approximate controllability of nonlocal fractional differential inclusions involving the Caputo fractional derivative of order q ∈ (1,2) in a Hilbert space. Utilizing measure of noncompactness and multivalued fixed point strategy, a new set of sufficient conditions is obtained to ensure the approximate controllability of nonlocal fractional differential inclusions when the multivalued maps are convex. Precisely, the results are developed under the assumption that the corresponding linear system is approximately controllable.  


2019 ◽  
Vol 22 (4) ◽  
pp. 1086-1112 ◽  
Author(s):  
Linxin Shu ◽  
Xiao-Bao Shu ◽  
Jianzhong Mao

Abstract In this paper, we consider the existence of mild solutions and approximate controllability for Riemann-Liouville fractional stochastic evolution equations with nonlocal conditions of order 1 < α < 2. As far as we know, there are few articles investigating on this issue. Firstly, the mild solutions to the equations are proved using Laplace transform of the Riemann-Liouville derivative. Moreover, the estimations of resolve operators involving the Riemann-Liouville fractional derivative of order 1 < α < 2 are given. Then, the existence results are obtained via the noncompact measurement strategy and the Mönch fixed point theorem. The approximate controllability of this nonlinear Riemann-Liouville fractional nonlocal stochastic systems of order 1 < α < 2 is concerned under the assumption that the associated linear system is approximately controllable. Finally, the approximate controllability results are obtained by using Lebesgue dominated convergence theorem.


Sign in / Sign up

Export Citation Format

Share Document