scholarly journals On the finite approximate controllability for Hilfer fractional evolution systems with nonlocal conditions

2020 ◽  
Vol 18 (1) ◽  
pp. 529-539
Author(s):  
Xianghu Liu

Abstract The aim of this study is to investigate the finite approximate controllability of certain Hilfer fractional evolution systems with nonlocal conditions. To achieve this, we first transform the mild solution of the Hilfer fractional evolution system into a fixed point problem for a condensing map. Then, by using the topological degree approach, we present sufficient conditions for the existence and uniqueness of the solution of the Hilfer fractional evolution systems. Using the variational approach, we obtain sufficient conditions for the finite approximate controllability of semilinear controlled systems. Finally, an example is provided to illustrate main results.

2017 ◽  
Vol 6 (3) ◽  
pp. 471-486 ◽  
Author(s):  
Jinrong Wang ◽  
◽  
Michal Fečkan ◽  
Yong Zhou ◽  
◽  
...  

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Daliang Zhao ◽  
Yansheng Liu

<p style='text-indent:20px;'>This paper presents a survey for some recent research on the controllability of nonlinear fractional evolution systems (FESs) in Banach spaces. The prime focus is exact controllability and approximate controllability of several types of FESs, which include the basic systems with classical initial and nonlocal conditions, FESs with time delay or impulsive effect. In addition, controllability results via resolvent operator are reviewed in detail. At last, the conclusions of this work and the research prospect are presented, which provides a reference for further study.</p>


2019 ◽  
Vol 24 (4) ◽  
Author(s):  
Alka Chadha ◽  
Rathinasamy Sakthivel ◽  
Swaroop Nandan Bora

In this paper, we study the approximate controllability of nonlocal fractional differential inclusions involving the Caputo fractional derivative of order q ∈ (1,2) in a Hilbert space. Utilizing measure of noncompactness and multivalued fixed point strategy, a new set of sufficient conditions is obtained to ensure the approximate controllability of nonlocal fractional differential inclusions when the multivalued maps are convex. Precisely, the results are developed under the assumption that the corresponding linear system is approximately controllable.  


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
R. K. Sharma ◽  
Sumit Chandok

In this manuscript, we propose some sufficient conditions for the existence of solution for the multivalued orthogonal ℱ -contraction mappings in the framework of orthogonal metric spaces. As a consequence of results, we obtain some interesting results. Also as application of the results obtained, we investigate Ulam’s stability of fixed point problem and present a solution for the Caputo-type nonlinear fractional integro-differential equation. An example is also provided to illustrate the usability of the obtained results.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1554 ◽  
Author(s):  
Veronica Ilea ◽  
Diana Otrocol

Following the idea of T. Wongyat and W. Sintunavarat, we obtain some existence and uniqueness results for the solution of an integral equation with supremum. The paper ends with the study of Gronwall-type theorems, comparison theorems and a result regarding a Ulam–Hyers stability result for the corresponding fixed point problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
R. Ganesh ◽  
R. Sakthivel ◽  
N. I. Mahmudov ◽  
S. M. Anthoni

This paper addresses the issue of approximate controllability for a class of control system which is represented by nonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory,p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results are established under the assumption that the corresponding linear system is approximately controllable and functions satisfy non-Lipschitz conditions. The results generalize and improve some known results.


Filomat ◽  
2019 ◽  
Vol 33 (18) ◽  
pp. 5837-5849
Author(s):  
Monica-Felicia Bota ◽  
Erdal Karapınar

In this manuscript, we investigate a fixed point problem under a finite number of equality constraints involving a well-known Ciric type mappings in the context of b-metric space. We obtain sufficient conditions for the existence of solutions of such problems. We also express some immediate consequences of our main results.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lina Ma ◽  
Haibo Gu ◽  
Yiru Chen

In this paper, we consider a kind of neutral measure evolution equations with nonlocal conditions. By using semigroup theory and fixed point theorem, we can obtain sufficient conditions for the controllability results of such equations. Finally, an example is given to verify the reliability of the results.


2020 ◽  
Vol 23 (1) ◽  
pp. 268-291 ◽  
Author(s):  
Pengyu Chen ◽  
Xuping Zhang ◽  
Yongxiang Li

AbstractIn this article, we are concerned with the existence of mild solutions as well as approximate controllability for a class of fractional evolution equations with nonlocal conditions in Banach spaces. Sufficient conditions of existence of mild solutions and approximate controllability for the desired problem are presented by introducing a new Green’s function and constructing a control function involving Gramian controllability operator. The discussions are based on Schauder’s fixed point theorem as well as the theory of α-order solution operator and α-order resolvent operator. An example is given to illustrate the feasibility of our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document