Factors influencing water level changes in China’s largest freshwater lake, Poyang Lake, in the past 50 years

2014 ◽  
Vol 39 (7) ◽  
pp. 983-999 ◽  
Author(s):  
Xuchun Ye ◽  
Yunliang Li ◽  
Xianghu Li ◽  
Qi Zhang
2014 ◽  
Vol 52 (3) ◽  
pp. 201-214 ◽  
Author(s):  
Deniz Cukur ◽  
Sebastian Krastel ◽  
Hans Ulrich Schmincke ◽  
Mari Sumita ◽  
Yama Tomonaga ◽  
...  

2018 ◽  
Vol 19 (8) ◽  
pp. 2384-2396
Author(s):  
Xuefei Mei ◽  
Juan Du ◽  
Zhijun Dai ◽  
Jinzhou Du ◽  
Jinjuan Gao ◽  
...  

Author(s):  
Kuimei Qian ◽  
Martin Dokulil ◽  
Wan Lei ◽  
Yuwei Chen

Poyang Lake, which is the largest freshwater lake in China, has a seasonal flooding cycle that significantlychanges the water level every year. The aim of this study was to research the effects of water-level changeson periphytic algal assemblages in Poyang Lake. Dynamic shift of periphytic algal biomass were studied fromNovember 2016 to July 2019. Periphytic algal biomass and species composition were analyzed microscopically, andphysicochemical conditions were measured. There were significant seasonal variations in the community distributionof periphytic algae. The biomass of the periphyton ranged from 8 to 22,636 mg m-2. Periphytic algal biomassranged from 30 to 622 mg m-2 with the average of 204 mg m-2 in the LWL phase; periphytic algal biomass rangedfrom 8 to 21,839 mg m-2, with the average of 3,399 mg m-2 in the IWL phase. It ranged from 166 to 22,636 mgm-2, with the average 4,320 mg m-2 in the HWL phase and from 16 to 3,231 mg m-2 with the average of 585 mgm-2 in the DWL phase. There were temporal variations in periphytic algal community structure in Poyang Lake.Cryptophyceae dominated in algal periphyton from November 2016 to February 2017. Bacillariophyceae dominatedfrom March to July 2017 (increasing water-level phases). Pyrrophyceae and Euglenophyceae were dominant fromAugust and September (high-water-level phase) in 2017. Bacillariophyceae dominated through 2018 with occasionaldominance of Cryptophyceae from January to June and the occasional dominance of Chlorophyceae fromJuly to December. Chlorophyceae dominated from January to July in 2019 with occasional dominance of Bacillariophyceae.The water-level variations led to environmental heterogeneity in Poyang Lake, creating heterogeneoushabitats for algal periphyton. Our study revealed the primary importance of water level, water temperature, conductivity,total nitrogen, nitrite and total phosphorus as abiotic local factors structuring the periphytic algal communityin Poyang Lake. The water-level changes did not prevent growth of periphytic algae, but it did change the periphyticalgal community assemblages. This research provides data on the periphytic algae in Poyang Lake and will beuseful for establishing biological indicators of environmental changes and protecting Poyang Lake in the future.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1469 ◽  
Author(s):  
Lingyan Qi ◽  
Jiacong Huang ◽  
Junfeng Gao ◽  
Zhen Cui

A recent dramatic decline in water level during the dry season in China’s largest freshwater lake (Lake Poyang) significantly influenced water availability and biogeochemical processes. To learn the potential causes of water level decline, this study investigated the hydrodynamic response to bathymetric changes during three typical hydrological years by scenario simulation using Environmental Fluid Dynamics Code (EFDC). The simulation results indicated that bathymetric changes resulted in a water level decrease during a low water level period. Inter-annual variation in the decrease rate implied that water level in typical dry and wet years were influenced more significantly than that in moderate hydrological years. A spatial gradient in the distribution of water level changes was also observed, which was mainly concentrated in the main channel. Water velocities also slowed down, weakly corresponding to the decrease in water level during the low water level period. Overall, bathymetric changes caused by sand mining contributed to water level and velocity variations, influencing the stability and sustainability of the lake ecosystem. This study can potentially enhance our understanding of the hydrodynamic processes in Lake Poyang and support water resource management.


2020 ◽  
Vol 558 ◽  
pp. 66-74
Author(s):  
Zhiwei Wan ◽  
Zhendong Gao ◽  
Xi Chen ◽  
Zhi Zhang ◽  
Fuqiang Liao ◽  
...  
Keyword(s):  

Water ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 137 ◽  
Author(s):  
Ruonan Wang ◽  
Wenqi Peng ◽  
Xiaobo Liu ◽  
Wenqiang Wu ◽  
Xuekai Chen ◽  
...  

2018 ◽  
Vol 64 (11) ◽  
pp. 786-797 ◽  
Author(s):  
Zhaoyu Kong ◽  
Wenbo Kou ◽  
Yantian Ma ◽  
Haotian Yu ◽  
Gang Ge ◽  
...  

The spatiotemporal shifts of the bacterioplankton community can mirror their transition of functional traits in an aquatic ecosystem. However, the spatiotemporal variation of the bacterioplankton community composition structure (BCCS) within a large, shallow, highly dynamic freshwater lake is still poorly understood. Here, we examined the seasonal and spatial variability of the BCCs within Poyang Lake by sequencing the 16S rRNA gene amplicon to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of the BCCs were mainly attributed to the differences between autumn and spring–winter. Higher α diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significantly lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1, and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature, and nutrient status shaped the seasonal patterns of the BCCs within Poyang Lake.


Sign in / Sign up

Export Citation Format

Share Document