Design of supply chain networks with multi-phased discount price and service level: formulation, complexity, and algorithm

2009 ◽  
Vol 30 (2) ◽  
pp. 311-334 ◽  
Author(s):  
Kuei-Hsien Chen ◽  
Jui-Tsung Wong ◽  
Chwen-Tzeng Su
Author(s):  
Sepideh Alavi ◽  
Nader Azad ◽  
Mojtaba Heydar ◽  
Hamid Davoudpour

This paper studies the design and development of an inventory model for manufacturers with constant production rates considering location and allocation decisions in a three-level supply chain. In this supply chain, the demands of customers and the lead times are assumed to be uncertain. Therefore, each distribution center retains some amount of safety stock to provide suitable service level for customers. The proposed non-linear model aims to minimize location and inventory costs of distribution centers, manufacturers and transportation costs subject to relevant constraints. To solve the model, an efficient imperialist competitive algorithm and a Tabu search algorithm, each using variable neighborhood search, are proposed. The model outputs are decisions such as which distribution centers and manufacturers are opened, the allocation of customers to distribution centers, and distribution centers to manufacturers. Results are also the ordering quantity of each opened distribution center and the production rate of each opened manufacturer. The computational results for several instances of the problem are represented to show the efficiency of proposed algorithm.


2011 ◽  
Vol 2011 ◽  
pp. 1-27 ◽  
Author(s):  
Ashkan Hafezalkotob ◽  
Ahmad Makui ◽  
Seyed Jafar Sadjadi

An integrated equilibrium model for tactical decisions in network design is developed. We consider a decentralized supply chain network operating in markets under uncertain demands when there is a rival decentralized chain. The primary assumption is that two chains provide partial substitutable products to the markets, and markets' demands are affected by tactical decisions such as price, service level, and advertising expenditure. Each chain consists of one risk-averse manufacturer and a set of risk-averse retailers. The strategic decisions are frequently taking precedence over tactical ones. Therefore, we first find equilibrium of tactical decisions for each possible scenario of supply chain network. Afterwards, we find optimal distribution network of the new supply chain by the scenario evaluation method. Numerical example, including sensitivity analysis will illustrate how the conservative behaviors of chains' members affect expected demand, profit, and utility of each distribution scenario.


2014 ◽  
Vol 74 (1-4) ◽  
pp. 445-460 ◽  
Author(s):  
Abdulaziz T. Almaktoom ◽  
Krishna K. Krishnan ◽  
Pingfeng Wang ◽  
Samir Alsobhi

Author(s):  
Peng Li ◽  
Di Wu

The rapid development of e-commerce technologies has encouraged collection centers to adopt online recycling channels in addition to their existing traditional (offline) recycling channels, such the idea of coexisting traditional and online recycling channels evolved a new concept of a dual-channel reverse supply chain (DRSC). The adoption of DRSC will make the system lose stability and fall into the trap of complexity. Further the consumer-related factors, such as consumer preference, service level, have also severely affected the system efficiency of DRSC. Therefore, it is necessary to help DRSCs to design their networks for maintaining competitiveness and profitability. This paper focuses on the issues of quantitative modelling for the network design of a general multi-echelon, dual-objective DRSC system. By incorporating consumer preference for the online recycling channel into the system, we investigate a mixed integer linear programming (MILP) model to design the DRSC network with uncertainty and the model is solved using the ε-constraint method to derive optimal Pareto solutions. Numerical results show that there exist positive correlations between consumer preference and total collective quantity, online recycling price and the system profits. The proposed model and solution method could assist recyclers in pricing and service decisions to achieve a balance solution for economic and environmental sustainability.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Siddharth Arora ◽  
Alexandra Brintrup

AbstractThe relationship between a firm and its supply chain has been well studied, however, the association between the position of firms in complex supply chain networks and their performance has not been adequately investigated. This is primarily due to insufficient availability of empirical data on large-scale networks. To addresses this gap in the literature, we investigate the relationship between embeddedness patterns of individual firms in a supply network and their performance using empirical data from the automotive industry. In this study, we devise three measures that characterize the embeddedness of individual firms in a supply network. These are namely: centrality, tier position, and triads. Our findings caution us that centrality impacts individual performance through a diminishing returns relationship. The second measure, tier position, allows us to investigate the concept of tiers in supply networks because we find that as networks emerge, the boundaries between tiers become unclear. Performance of suppliers degrade as they move away from the focal firm (i.e., Toyota). The final measure, triads, investigates the effect of buying and selling to firms that supply the same customer, portraying the level of competition and cooperation in a supplier’s network. We find that increased coopetition (i.e., cooperative competition) is a performance enhancer, however, excessive complexity resulting from being involved in both upstream and downstream coopetition results in diminishing performance. These original insights help understand the drivers of firm performance from a network perspective and provide a basis for further research.


Sign in / Sign up

Export Citation Format

Share Document