Response of soil organic matter indices and fractions after 37 years of wheat production management practices in semi-arid South Africa

2020 ◽  
Vol 37 (2) ◽  
pp. 136-143
Author(s):  
T Motema ◽  
E Kotzé ◽  
PF Loke ◽  
CC du Preez
Soil Research ◽  
2013 ◽  
Vol 51 (5) ◽  
pp. 415 ◽  
Author(s):  
P. F. Loke ◽  
E. Kotzé ◽  
C. C. Du Preez

Farmers continuously remove crop residues for use as building materials, fuel and animal feed or bedding as well as to avoid difficulties during tillage operations. Therefore, demonstrations of the benefits of recycling crop residues are necessary. The aim with this study was to evaluate the influence of different wheat production management practices on acidity and some essential nutrients from a long-term trial on a Plinthosol in semi-arid South Africa. The trial was set up in 1979, and since then two methods of straw management (unburned and burned), three methods of tillage (no-tillage, stubble mulch, and plough), two methods of weed control (chemical and mechanical), and three levels of nitrogen (N) fertiliser (20, 40 and 60 kg ha–1) have been applied. Soil samples were collected in June 2010 at depths of 0–50, 50–100, 100–150, 150–250, 250–350 and 350–450 mm from plots that received 40 kg N ha–1 and were analysed for pH, phosphorus (P), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn). Results obtained showed that straw burning resulted in higher P and Mn but lower Cu than no-burning. No-tillage, and to some extent stubble mulch, suppressed soil acidification and increased P and Zn compared with ploughing, especially in the surface layers where crop residues accumulate. In contrast, mouldboard ploughing and stubble mulch increased Cu more than no-tillage, possibly due to the strong affinity of organic matter for Cu. Tillage effects on Mn were inconsistent and difficult to explain. Chemical weeding also improved P, probably because of the pesticide application, but resulted in lower pH and Cu values compared with mechanical weeding. Treatment combinations also had an influence on P and, to a lesser extent, on soil pH and Cu, which might be due to the higher organic matter present in no-tilled soils. Irrespective of straw management or weed-control methods, no-tillage resulted in higher P than did ploughing and stubble mulch. Nutrient concentrations and pH values were sufficient for wheat growth under all treatments. However, although the nutrients were highest under straw burning, no-tillage and, to some extent, stubble mulch, wheat yield was higher with unburned straw and mouldboard ploughing. Therefore, an integrated approach from various disciplines is recommended to identify and rectify yield-limiting factors under conservation tillage systems.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


Sign in / Sign up

Export Citation Format

Share Document