scholarly journals On the ability of large-scale hydrological models to simulate land use and land cover change impacts in Amazonian basins

Author(s):  
Daniel Andres Rodriguez ◽  
Javier Tomasella
2011 ◽  
Vol 403-408 ◽  
pp. 1543-1547
Author(s):  
Gai Ying Chen ◽  
Da Zhi Guo ◽  
Malgorzata Verőné Wojtaszek ◽  
Béla Márkus

Because of the rapid economy development and the enormous society evolution, large scale changes of land use and land cover had occurred in areas of Beijing and Hungary in the past two decades. This paper focused on monitoring on LUCC(land use and land cover change) in Changping,Beijing, China and Lake Velence watershed area in Szekesfehervar, Hungary based on Multi-Temporal, Multi-Spatial and multi-source remotely sensed images and Geographic Information System( GIS).


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 988
Author(s):  
João V. R. Guerrero ◽  
Elton V. Escobar-Silva ◽  
Michel E. D. Chaves ◽  
Guilherme A. V. Mataveli ◽  
Vandoir Bourscheidt ◽  
...  

Over the decades, hydropower complexes have been built in several hydrographic basins of Brazil including the Amazon region. Therefore, it is important to understand the effects of these constructions on the environment and local communities. This work presents a land use and land cover change temporal analysis considering a 33-year period (1985–2018) in the direct influence zone of the Braço Norte Hydropower Complex, Brazilian Amazonia, using the Collection 4.1 level 3 of the freely available MapBiomas dataset. Additionally, we have assessed the Brazilian Amazon large-scale deforestation process acting as a land use and land cover change driver in the study area. Our findings show that the most impacted land cover was forest formation (from 414 km2 to 287 km2, a reduction of 69%), which primarily shifted into pasturelands (increase of 664%, from 40 km2 to 299 km2). The construction of the hydropower complex also triggered indirect impacts such as the presence of urban areas in 2018 and the consequent increased local demand for crops. Together with the ongoing large-scale Amazonian deforestation process, the construction of the complex has intensified changes in the study area as 56.42% of the pixels were changed between 1985 and 2018. This indicates the importance of accurate economic and environmental impact studies for assessing social and environmental consequences of future construction in this unique region. Our results reveal the need for adopting special policies to minimize the impact of these constructions, for example, the creation of Protected Areas and the definition of locally-adjusted parameters for the ecological-economic zoning considering environmental and social circumstances derived from the local actors that depend on the natural environment to subsist such as indigenous peoples, riverine population, and artisanal fishermen.


2016 ◽  
Vol 16 (4) ◽  
pp. 2323-2340 ◽  
Author(s):  
Jeffrey A. Geddes ◽  
Colette L. Heald ◽  
Sam J. Silva ◽  
Randall V. Martin

Abstract. Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land–atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to the projected change in emissions is affected by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that 8 h average O3 exceeds 70 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. The influence of changes in dry deposition demonstrated here underscores the need to evaluate treatments of this physical process in models. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5–10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 and 2 µg m−3. Changes to reactive nitrogen oxide abundance and partitioning are also locally important. The regional effects simulated here are similar in magnitude to other scenarios that consider future biofuel cropping or natural succession, further demonstrating that biosphere–atmosphere exchange should be considered when predicting future air quality and climate. We point to important uncertainties and further development that should be addressed for a more robust understanding of land cover change feedbacks.


2020 ◽  
Vol 20 (19) ◽  
pp. 11349-11369
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. Land use and land cover change (LULCC) can on the one hand affect ozone “biogeochemically”, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULCC can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology, and atmospheric circulation that can ultimately impact ozone “biogeophysically”. Such biogeophysical effects of LULCC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULCC on ozone and explicitly examines the critical pathway for how LULCC impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULCC from the present day (2000) to the future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULCC. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the combined effect of LULCC, ozone is more substantially altered by up to 5 ppbv over several regions in North America and Europe under RCP4.5, reflecting the importance of biogeophysical effects on ozone changes. In boreal and temperate mixed forests with intensive reforestation, enhanced net radiation and sensible heat induce a cascade of hydrometeorological feedbacks that generate warmer and drier conditions favorable for higher ozone levels. In contrast, reforestation in subtropical broadleaf forests has minimal impacts on boundary-layer meteorology and ozone air quality. Furthermore, significant ozone changes are also found in regions with only modest LULCC, which can only be explained by “remote” biogeophysical effects. A likely mechanism is that reforestation induces a circulation response, leading to reduced moisture transport and ultimately warmer and drier conditions in the surrounding regions with limited LULCC. We conclude that the biogeophysical effects of LULCC are important pathways through which LULCC influences ozone air quality both locally and in remote regions even without significant LULCC. Overlooking the effects of hydrometeorological changes on ozone air quality may cause underestimation of the impacts of LULCC on ozone pollution.


2015 ◽  
Vol 15 (20) ◽  
pp. 29303-29345
Author(s):  
J. A. Geddes ◽  
C. L. Heald ◽  
S. J. Silva ◽  
R. V. Martin

Abstract. Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land–atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to emissions is controlled by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that average 8 h O3 exceeds 65 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5–10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 to 2 μg m−3. Changes to reactive nitrogen oxide abundance and partitioning are also locally important. These simulations suggest that changes in biosphere–atmosphere exchange must be considered when predicting future air quality and climate. We point to important uncertainties and further development that should be addressed for a more robust understanding of land cover change feedbacks.


2011 ◽  
Vol 13 (5) ◽  
pp. 695-700
Author(s):  
Zhihua TANG ◽  
Xianlong ZHU ◽  
Cheng LI

Sign in / Sign up

Export Citation Format

Share Document