scholarly journals Sodium bicarbonate improves 4 km time trial cycling performance when individualised to time to peak blood bicarbonate in trained male cyclists

2017 ◽  
Vol 36 (15) ◽  
pp. 1705-1712 ◽  
Author(s):  
Lewis A. Gough ◽  
Sanjoy K. Deb ◽  
S. Andy Sparks ◽  
Lars R. McNaughton
Author(s):  
Tue A.H. Lassen ◽  
Lars Lindstrøm ◽  
Simon Lønbro ◽  
Klavs Madsen

The present study investigated individualized sodium bicarbonate (NaHCO3−) supplementation in elite orienteers and its effects on alkalosis and performance in a simulated sprint orienteering competition. Twenty-one Danish male and female elite orienteers (age = 25.2 ± 3.6 years, height = 176.4 ± 10.9 cm, body mass = 66.6 ± 7.9 kg) were tested twice in order to identify individual time to peak blood bicarbonate (HCO3− peak) following supplementation of 0.3 g/kg body mass NaHCO3 with and without warm-up. The athletes also performed two 3.5 km time-trial runs (TT-runs) following individualized timing of NaHCO3 supplementation (SBS) or placebo (PLA) on separate days in a randomized, double-blind, cross-over design. The occurrence of individual peak HCO3− and pH ranged from 60 to 180 min. Mean HCO3− and pH in SBS were significantly higher compared with PLA 10 min before and following the TT-run (p < .01). SBS improved overall performance in the 3.5 km TT-run by 6 s compared with PLA (775.5 ± 16.2 s vs. 781.4 ± 16.1 s, respectively; p < .05). SBS improved performance in the last half of the TT-run compared with PLA (p < .01). In conclusion, supplementation with NaHCO3 followed by warm-up resulted in individualized alkalosis peaks ranging from 60 to 180 min. Individualized timing of SBS in elite orienteers induced significant alkalosis before and after a 3.5 km TT and improved overall performance time by 6 s, which occurred in the last half of the time trial. The present data show that the anaerobic buffer system is important for performance in these types of endurance events lasting 12–15 min.


2021 ◽  
Author(s):  
Josh W Newbury ◽  
Matthew Cole ◽  
Adam L Kelly ◽  
Richard J Chessor ◽  
Andy Sparks ◽  
...  

Background: Contemporary research suggests that the optimal timing of sodium bicarbonate (NaHCO 3 ) should be based upon an individual time in which bicarbonate (HCO 3 – ) or pH peaks within the blood. However, the mechanisms surrounding acidosis on exercise performance are contested, therefore it is plausible that the ergogenic effects of NaHCO 3 are instead a result of an increased strong ion difference (SID) following ingestion. Since the post-ingestion time course of the SID is currently unknown, the purpose of this study was to investigate the pharmacokinetics of the SID in direct comparison to HCO 3 – and pH. Methods: Twelve highly trained, adolescent swimmers (age: 15.9 ± 1.0 yrs, body mass: 65.3 ± 9.6 kg) consumed their typical pre-competition nutrition before ingesting 0.3 g?kg BM -1 NaHCO 3 in gelatine capsules. Capillary blood samples were then taken during quiet, seated rest on nine occasions (0, 60, 75, 90, 105, 120, 135, 150, and 165 min post-ingestion) for the assessment of time course changes in HCO 3 – , pH, and the SID. Results: On a group mean level, no differences were found in the time in which each variable peaked within the blood (HCO 3 – = 130 ± 35 min, pH = 120 ± 38 min, SID = 96 ± 35 min; p = 0.06). A large effect size was calculated between the timing of peak HCO 3 – and the SID  ( g = 0.91), however, suggesting that a difference may occur between these two measures in practice. Conclusions: A time difference between peak HCO 3 – and the SID presents an interesting avenue for further research since an approach based upon individual increases in extracellular SID has yet to be investigated. Future studies should therefore compare these dosing strategies directly to elucidate whether either one is more ergogenic for exercise performance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0248456
Author(s):  
Josh W. Newbury ◽  
Matthew Cole ◽  
Adam L. Kelly ◽  
Richard J. Chessor ◽  
S. Andy Sparks ◽  
...  

The timing of sodium bicarbonate (NaHCO3) supplementation has been suggested to be most optimal when coincided with a personal time that bicarbonate (HCO3–) or pH peaks in the blood following ingestion. However, the ergogenic mechanisms supporting this ingestion strategy are strongly contested. It is therefore plausible that NaHCO3 may be ergogenic by causing beneficial shifts in the strong ion difference (SID), though the time course of this blood acid base balance variable is yet to be investigated. Twelve highly trained, adolescent swimmers (age: 15.9 ± 1.0 years, body mass: 65.3 ± 9.6 kg) consumed their typical pre-competition nutrition 1–3 hours before ingesting 0.3 g∙kg BM-1 NaHCO3 in gelatine capsules. Capillary blood samples were then taken during seated rest on nine occasions (0, 60, 75, 90, 105, 120, 135, 150, 165 min post-ingestion) to identify the time course changes in HCO3–, pH, and the SID. No significant differences were found in the time to peak of each blood measure (HCO3–: 130 ± 35 min, pH: 120 ± 38 min, SID: 98 ± 37 min; p = 0.08); however, a large effect size was calculated between time to peak HCO3– and the SID (g = 0.88). Considering that a difference between time to peak blood HCO3– and the SID was identified in adolescents, future research should compare the ergogenic effects of these two individualized NaHCO3 ingestion strategies compared to a traditional, standardized approach.


2012 ◽  
Vol 22 (3) ◽  
pp. 175-183 ◽  
Author(s):  
Andrew E. Kilding ◽  
Claire Overton ◽  
Jonathan Gleave

Purpose:To determine the effects of ingesting caffeine (CAFF) and sodium bicarbonate (SB), taken individually and simultaneously, on 3-km cycling time-trial (TT) performance.Method:Ten well-trained cyclists, age 24.2 ± 5.4 yr, participated in this acute-treatment, double-blind, crossover study that involved four 3-km cycling TTs performed on separate days. Before each TT, participants ingested either 3 mg/kg body mass (BM) of CAFF, 0.3 g · kg−1 · BM−1 of SB, a combination of the two (CAFF+SB), or a placebo (PLAC). They completed each 3-km TT on a laboratory-based cycle ergometer, during which physiological, perceptual, and performance measurements were determined. For statistical analysis, the minimal worthwhile difference was considered ~1% based on previous research.Results:Pretrial pH and HCO3 were higher in SB and CAFF+SB than in the CAFF and PLAC trials. Differences across treatments for perceived exertion and gastric discomfort were mostly unclear. Compared with PLAC, mean power output during the 3-km TT was higher in CAFF, SB, and CAFF+SB trials (2.4%, 2.6%, 2.7% respectively), resulting in faster performance times (–0.9, –1.2, –1.2% respectively). Effect sizes for all trials were small (0.21–0.24).Conclusions:When ingested individually, both CAFF and SB enhance high-intensity cycling TT performance in trained cyclists. However, the ergogenic effect of these 2 popular supplements was not additive, bringing into question the efficacy of coingesting the 2 supplements before short-duration high-intensity exercise. In this study there were no negative effects of combining CAFF and SB, 2 relatively inexpensive and safe supplements.


Nutrients ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 269 ◽  
Author(s):  
Tuğba Kulaksız ◽  
Şükran Koşar ◽  
Suleyman Bulut ◽  
Yasemin Güzel ◽  
Marcus Willems ◽  
...  

2006 ◽  
Vol 16 (4) ◽  
pp. 405-419 ◽  
Author(s):  
Holden S-H. MacRae ◽  
Kari M. Mefferd

We investigated whether 6 wk of antioxidant supplementation (AS) would enhance 30 km time trial (TT) cycling performance. Eleven elite male cyclists completed a randomized, double-blind, cross-over study to test the effects of twice daily AS containing essential vitamins plus quercetin (FRS), and AS minus quercetin (FRS-Q) versus a baseline TT (B). MANOVA analysis showed that time to complete the 30 km TT was improved by 3.1% on FRS compared to B (P ≤ 0.01), and by 2% over the last 5 km (P ≤ 0.05). Absolute and relative (%HRmax) heart rates and percent VO2max were not different between trials, but average and relative power (% peak power) was higher on FRS (P ≤ 0.01). Rates of carbohydrate and fat oxidation were not different between trials. Thus, FRS supplementation significantly improved high-intensity cycling TT performance through enhancement of power output. Further study is needed to determine the potential mechanism(s) of the antioxidant efficacy.


2015 ◽  
Vol 25 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Michael L. Newell ◽  
Angus M. Hunter ◽  
Claire Lawrence ◽  
Kevin D. Tipton ◽  
Stuart D. R. Galloway

In an investigator-blind, randomized cross-over design, male cyclists (mean± SD) age 34.0 (± 10.2) years, body mass 74.6 (±7.9) kg, stature 178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, and VO2max 62 (±9) ml·kg−1min−1 training for more than 6 hr/wk for more than 3y (n = 20) completed four experimental trials. Each trial consisted of a 2-hr constant load ride at 95% of lactate threshold (185 ± 25W) then a work-matched time trial task (~30min at 70% of PPO). Three commercially available carbohydrate (CHO) beverages, plus a control (water), were administered during the 2-hr ride providing 0, 20, 39, or 64g·hr−1 of CHO at a fluid intake rate of 1L·hr−1. Performance was assessed by time to complete the time trial task, mean power output sustained, and pacing strategy used. Mean task completion time (min:sec ± SD) for 39g·hr−1 (34:19.5 ± 03:07.1, p = .006) and 64g·hr−1 (34:11.3 ± 03:08.5 p = .004) of CHO were significantly faster than control (37:01.9 ± 05:35.0). The mean percentage improvement from control was −6.1% (95% CI: −11.3 to −1.0) and −6.5% (95% CI: −11.7 to −1.4) in the 39 and 64g·hr−1 trials respectively. The 20g·hr−1 (35:17.6 ± 04:16.3) treatment did not reach statistical significance compared with control (p = .126) despite a mean improvement of −3.7% (95% CI −8.8−1.5%). No further differences between CHO trials were reported. No interaction between CHO dose and pacing strategy occurred. 39 and 64g·hr−1 of CHO were similarly effective at improving endurance cycling performance compared with a 0g·hr−1 control in our trained cyclists.


2020 ◽  
Vol 120 (7) ◽  
pp. 1563-1573 ◽  
Author(s):  
Nathan Philip Hilton ◽  
Nicholas Keith Leach ◽  
Melissa May Hilton ◽  
S. Andy Sparks ◽  
Lars Robert McNaughton

Sign in / Sign up

Export Citation Format

Share Document