Spelling in developmental dyslexia in Chinese: Evidence of deficits in statistical learning and over-reliance on phonology

2020 ◽  
Vol 37 (7-8) ◽  
pp. 494-510
Author(s):  
Stephen Man Kit Lee ◽  
Xiuli Tong
2021 ◽  
Vol 11 (9) ◽  
pp. 1143
Author(s):  
Xenia Schmalz ◽  
Barbara Treccani ◽  
Claudio Mulatti

Many theories have been put forward that propose that developmental dyslexia is caused by low-level neural, cognitive, or perceptual deficits. For example, statistical learning is a cognitive mechanism that allows the learner to detect a probabilistic pattern in a stream of stimuli and to generalise the knowledge of this pattern to similar stimuli. The link between statistical learning and reading ability is indirect, with intermediate skills, such as knowledge of frequently co-occurring letters, likely being causally dependent on statistical learning skills and, in turn, causing individual variation in reading ability. We discuss theoretical issues regarding what a link between statistical learning and reading ability actually means and review the evidence for such a deficit. We then describe and simulate the “noisy chain hypothesis”, where each intermediary link between a proposed cause and the end-state of reading ability reduces the correlation coefficient between the low-level deficit and the end-state outcome of reading. We draw the following conclusions: (1) Empirically, there is evidence for a correlation between statistical learning ability and reading ability, but there is no evidence to suggest that this relationship is causal, (2) theoretically, focussing on a complete causal chain between a distal cause and developmental dyslexia, rather than the two endpoints of the distal cause and reading ability only, is necessary for understanding the underlying processes, (3) statistically, the indirect nature of the link between statistical learning and reading ability means that the magnitude of the correlation is diluted by other influencing variables, yielding most studies to date underpowered, and (4) practically, it is unclear what can be gained from invoking the concept of statistical learning in teaching children to read.


2019 ◽  
Author(s):  
Xenia Schmalz ◽  
Kristina Moll ◽  
Claudio Mulatti ◽  
Gerd Schulte-Körne

Previous studies found a relationship between performance on statistical learning (SL) tasks and reading ability and developmental dyslexia. Thus, it has been suggested that the ability to implicitly learn patterns may be important for reading acquisition. Causal mechanisms behind this relationship are unclear: Although orthographic sensitivity to letter bigrams may emerge through SL and facilitate reading, there is no empirical support for this link. We test 84 adults on two SL tasks, reading tests, and a bigram sensitivity task. We test for correlations using Bayes factors. This serves to test the prediction that SL and reading ability are correlated and to explore sensitivity to bigram legality as a potential mediator. We find no correlations between SL tasks and reading ability, SL and bigram sensitivity, or between the SL tasks. We conclude that correlating SL with reading ability may not yield replicable results, partly due to low correlations between SL tasks.


Author(s):  
Dorottya Dobó ◽  
Krisztina Sára Lukics ◽  
Ágnes Szőllősi ◽  
Kornél Németh ◽  
Ágnes Lukács

Purpose Impairments in statistical learning abilities of individuals with developmental dyslexia (DD) have been demonstrated in word segmentation and in visual artificial grammar learning (AGL) tasks, but so far, little attention has been devoted to the AGL abilities of this population in the acoustic verbal domain. This study aimed to test whether adolescents with dyslexia have difficulties in extracting abstract patterns from auditory sequences of nonsense syllables based on a finite state grammar relative to typically developing (TD) peers. We also tested whether incremental presentation of stimuli of different lengths (starting small) has a facilitating effect on learning complex structures in dyslexia (and in TD) as opposed to presenting strings in random order. Method Thirty-one adolescents with DD and 31 age-matched control participants completed an AGL task. Participants passively listened to acoustic sequences of nonsense syllables generated by an artificial grammar in the training phase. In the test phase, they were presented with pairs of novel grammatical and nongrammatical sequences and were required to decide which member of a sequence pair was more similar to the material heard during training. Results Performance levels and the proportion of learners were smaller in participants with DD than in the control group. While the starting small effect was nominally present both in performance levels and in the number of learners in participants with DD, but not in the group with TD, the presentation of strings in incremental order did not statistically improve learning performance in either group. Conclusion Our results suggest that (a) statistical learning of abstract sequences in the acoustic domain is less efficient in people with dyslexia than in TD controls and (b) while incremental presentation of stimuli of different length did not improve learning in our study, the observed pattern of results suggests that the effects of different training designs should be explored further in developmental disorders.


2021 ◽  
Author(s):  
Xenia Schmalz ◽  
Barbara Treccani ◽  
Claudio Mulatti

Many theories have been put forward that propose that developmental dyslexia is caused by low-level neural, cognitive or perceptual deficits. For example, statistical learning is a cognitive mechanism which allows the learner to detect a probabilistic pattern in a stream of stimuli, and to generalise the knowledge of this pattern to similar stimuli. The link between statistical learning and reading ability is indirect, with intermediate skills, such as knowledge of frequently co-occurring letters, likely being causally dependent on statistical learning skills and, in turn, causing individual variation in reading ability. We discuss theoretical issues regarding what a link between statistical learning and reading ability actually means, and review the evidence for such a deficit. We then describe and simulate the “Noisy Chain Hypothesis”, where each intermediary link between a proposed cause and the end-state of reading ability reduces the correlation coefficient between the low-level deficit and the end-state outcome of reading. We draw the following conclusions: (1) Empirically, there is evidence for a correlation between statistical learning ability and reading ability, but there is no evidence to suggest that this relationship is causal, (2) theoretically, focusing on a complete causal chain between a distal cause and developmental dyslexia, rather than the two end points of the distal cause and reading ability only, is necessary for understanding the underlying processes, (3) statistically, the indirect nature of the link between statistical learning and reading ability means that the magnitude of the correlation is diluted by other influencing variables, yielding most studies to date underpowered, and (4) practically, it is unclear what can be gained from invoking the concept of statistical learning in teaching children to read.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Heida Maria Sigurdardottir ◽  
Hilda Bjork Danielsdottir ◽  
Margret Gudmundsdottir ◽  
Kristjan Helgi Hjartarson ◽  
Elin Astros Thorarinsdottir ◽  
...  

2015 ◽  
Vol 58 (3) ◽  
pp. 934-945 ◽  
Author(s):  
Yafit Gabay ◽  
Erik D. Thiessen ◽  
Lori L. Holt

Purpose Developmental dyslexia (DD) is commonly thought to arise from phonological impairments. However, an emerging perspective is that a more general procedural learning deficit, not specific to phonological processing, may underlie DD. The current study examined if individuals with DD are capable of extracting statistical regularities across sequences of passively experienced speech and nonspeech sounds. Such statistical learning is believed to be domain-general, to draw upon procedural learning systems, and to relate to language outcomes. Method DD and control groups were familiarized with a continuous stream of syllables or sine-wave tones, the ordering of which was defined by high or low transitional probabilities across adjacent stimulus pairs. Participants subsequently judged two 3-stimulus test items with either high or low statistical coherence as being the most similar to the sounds heard during familiarization. Results As with control participants, the DD group was sensitive to the transitional probability structure of the familiarization materials as evidenced by above-chance performance. However, the performance of participants with DD was significantly poorer than controls across linguistic and nonlinguistic stimuli. In addition, reading-related measures were significantly correlated with statistical learning performance of both speech and nonspeech material. Conclusion Results are discussed in light of procedural learning impairments among participants with DD.


Author(s):  
Ana Franco ◽  
Julia Eberlen ◽  
Arnaud Destrebecqz ◽  
Axel Cleeremans ◽  
Julie Bertels

Abstract. The Rapid Serial Visual Presentation procedure is a method widely used in visual perception research. In this paper we propose an adaptation of this method which can be used with auditory material and enables assessment of statistical learning in speech segmentation. Adult participants were exposed to an artificial speech stream composed of statistically defined trisyllabic nonsense words. They were subsequently instructed to perform a detection task in a Rapid Serial Auditory Presentation (RSAP) stream in which they had to detect a syllable in a short speech stream. Results showed that reaction times varied as a function of the statistical predictability of the syllable: second and third syllables of each word were responded to faster than first syllables. This result suggests that the RSAP procedure provides a reliable and sensitive indirect measure of auditory statistical learning.


Sign in / Sign up

Export Citation Format

Share Document