Fabrication of Moxifloxacin HCl loaded biodegradable chitosan nanoparticles for potential antibacterial and accelerated cutaneous wound healing efficacy

Author(s):  
Misbah Hameed ◽  
Akhtar Rasul ◽  
Sumera Latif ◽  
Maria Rasool ◽  
Ghulam Abbas ◽  
...  
2019 ◽  
Vol 56 (3) ◽  
pp. 479-483 ◽  
Author(s):  
Simona Cavalu ◽  
Paula Melania Pasca ◽  
Marcel Brocks

The present paper describe the production and characterization of novel collagen films containing propolis encapsulated in chitosan nanoparticles, for biomedical applications such as cutaneous wound healing. Structural and morphological details were investigated by ATR FTIR spectroscopy, SEM and nanoindentation measurements, revealing the collagen fibers aligned in a quasi-parallel distribution, which might be favorable for biomedical applications. Moreover, the vibrational marker bands of propolis were well preserved in the final polymeric mixture, indicating the stability of bioactive compounds upon the encapsulation procedure. The antibacterial effect depends on the nanoparticles concentration in collagen film, the effect being more evident with respect to E. coli than S. aureus. The antioxidant capacity monitored by CUPRAC assay, indicated a synergic effect of chitosan nanoparticles matrix and propolis extract, incorporated in collagen films.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 643-P ◽  
Author(s):  
YANFEI HAN ◽  
LINDONG LI ◽  
YANJUN LIU ◽  
YOU WANG ◽  
CHUNHUA YAN ◽  
...  

2018 ◽  
Vol 8 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Anthony J. Deegan ◽  
Wendy Wang ◽  
Shaojie Men ◽  
Yuandong Li ◽  
Shaozhen Song ◽  
...  

2021 ◽  
Vol 122 ◽  
pp. 199-210
Author(s):  
Chen Wang ◽  
Guoyun Li ◽  
Kaige Cui ◽  
Zihan Chai ◽  
Ziyu Huang ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Eduardo Anitua ◽  
Victoria Muñoz ◽  
Libe Aspe ◽  
Roberto Tierno ◽  
Adrian García-Salvador ◽  
...  

<b><i>Introduction:</i></b> Skin injury and wound healing is an inevitable event during lifetime. However, several complications may hamper the regeneration of the cutaneous tissue and lead to a chronic profile that prolongs patient recovery. Platelet-rich plasma is rising as an effective and safe alternative to the management of wounds. However, this technology presents some limitations such as the need for repeated blood extractions and health-care interventions. <b><i>Objective:</i></b> The aim of this study was to assess the use of an endogenous and storable topical serum (ES) derived from plasma rich in growth factors promoting wound healing, and to obtain preliminary data regarding its clinical and experimental effect over ulcerated skin models and patient care. <b><i>Methods:</i></b> Human dermal fibroblast and 3D organotypic ulcerated skin models were used to assess ES over the main mechanisms of wound healing including cell migration, edge contraction, collagen synthesis, tissue damage, extracellular matrix remodeling, cell death, metabolic activity, and histomorphometry analysis. Additionally, 4 patients suffering from skin wounds were treated and clinically assessed. <b><i>Results:</i></b> ES promoted dermal fibroblast migration, wound edge contraction, and collagen synthesis. When topically applied, ES increased collagen and elastin deposition and reduced tissue damage. The interstitial edema, structural integrity, and cell activity were also maintained, and apoptotic levels were reduced. Patients suffering from hard-to-heal wounds of different etiologies were treated with ES, and the ulcers healed completely within few weeks with no reported adverse events. <b><i>Conclusion:</i></b> This preliminary study suggests that ES might promote cutaneous wound healing and may be useful for accelerating the re-epithelization of skin ulcers.


Sign in / Sign up

Export Citation Format

Share Document