In vitro and in vivo Effect of Platelet-Rich Plasma-Based Autologous Topical Serum on Cutaneous Wound Healing

2021 ◽  
pp. 1-13
Author(s):  
Eduardo Anitua ◽  
Victoria Muñoz ◽  
Libe Aspe ◽  
Roberto Tierno ◽  
Adrian García-Salvador ◽  
...  

<b><i>Introduction:</i></b> Skin injury and wound healing is an inevitable event during lifetime. However, several complications may hamper the regeneration of the cutaneous tissue and lead to a chronic profile that prolongs patient recovery. Platelet-rich plasma is rising as an effective and safe alternative to the management of wounds. However, this technology presents some limitations such as the need for repeated blood extractions and health-care interventions. <b><i>Objective:</i></b> The aim of this study was to assess the use of an endogenous and storable topical serum (ES) derived from plasma rich in growth factors promoting wound healing, and to obtain preliminary data regarding its clinical and experimental effect over ulcerated skin models and patient care. <b><i>Methods:</i></b> Human dermal fibroblast and 3D organotypic ulcerated skin models were used to assess ES over the main mechanisms of wound healing including cell migration, edge contraction, collagen synthesis, tissue damage, extracellular matrix remodeling, cell death, metabolic activity, and histomorphometry analysis. Additionally, 4 patients suffering from skin wounds were treated and clinically assessed. <b><i>Results:</i></b> ES promoted dermal fibroblast migration, wound edge contraction, and collagen synthesis. When topically applied, ES increased collagen and elastin deposition and reduced tissue damage. The interstitial edema, structural integrity, and cell activity were also maintained, and apoptotic levels were reduced. Patients suffering from hard-to-heal wounds of different etiologies were treated with ES, and the ulcers healed completely within few weeks with no reported adverse events. <b><i>Conclusion:</i></b> This preliminary study suggests that ES might promote cutaneous wound healing and may be useful for accelerating the re-epithelization of skin ulcers.

2019 ◽  
Vol 133 (9) ◽  
Author(s):  
Tingting Zeng ◽  
Xiaoyi Wang ◽  
Wei Wang ◽  
Qiling Feng ◽  
Guojuan Lao ◽  
...  

Abstract Diabetic foot ulcer is a life-threatening clinical problem in diabetic patients. Endothelial cell-derived small extracellular vesicles (sEVs) are important mediators of intercellular communication in the pathogenesis of several diseases. However, the exact mechanisms of wound healing mediated by endothelial cell-derived sEVs remain unclear. sEVs were isolated from human umbilical vein endothelial cells (HUVECs) pretreated with or without advanced glycation end products (AGEs). The roles of HUVEC-derived sEVs on the biological characteristics of skin fibroblasts were investigated both in vitro and in vivo. We demonstrate that sEVs derived from AGEs-pretreated HUVECs (AGEs-sEVs) could inhibit collagen synthesis by activating autophagy of human skin fibroblasts. Additionally, treatment with AGEs-sEVs could delay the wound healing process in Sprague–Dawley (SD) rats. Further analysis indicated that miR-106b-5p was up-regulated in AGEs-sEVs and importantly, in exudate-derived sEVs from patients with diabetic foot ulcer. Consequently, sEV-mediated uptake of miR-106b-5p in recipient fibroblasts reduces expression of extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in fibroblasts autophagy activation and subsequent collagen degradation. Collectively, our data demonstrate that miR-106b-5p could be enriched in AGEs-sEVs, then decreases collagen synthesis and delays cutaneous wound healing by triggering fibroblasts autophagy through reducing ERK1/2 expression.


2016 ◽  
Vol 17 (1) ◽  
pp. 79 ◽  
Author(s):  
Cho-Hee Jee ◽  
Na-Young Eom ◽  
Hyo-Mi Jang ◽  
Hae-Won Jung ◽  
Eul-Soo Choi ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Deborah Chicharro-Alcántara ◽  
Mónica Rubio-Zaragoza ◽  
Elena Damiá-Giménez ◽  
José Carrillo-Poveda ◽  
Belén Cuervo-Serrato ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e32146 ◽  
Author(s):  
Tatiana N. Demidova-Rice ◽  
Lindsey Wolf ◽  
Jeffry Deckenback ◽  
Michael R. Hamblin ◽  
Ira M. Herman

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 643-P ◽  
Author(s):  
YANFEI HAN ◽  
LINDONG LI ◽  
YANJUN LIU ◽  
YOU WANG ◽  
CHUNHUA YAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document