Sufficient conditions for the stability of equilibrium for nonlinear conservative gyroscopic systems with first integrals

1993 ◽  
Vol 8 (4) ◽  
pp. 253-258
Author(s):  
Giancarlo Cantarelli
1991 ◽  
Vol 58 (1) ◽  
pp. 229-232 ◽  
Author(s):  
J. A. Walker

Sufficient conditions are obtained for the stability and instability of linear conservative gyroscopic systems. The conditions are nonspectral, involve only the definiteness of certain combinations of the coefficient matrices, and may yield useful design constraints. An example is employed to compare these results with earlier results of the same type.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Guiying Chen ◽  
Linshan Wang

The stability of a class of static interval neural networks with time delay in the leakage term is investigated. By using the method ofM-matrix and the technique of delay differential inequality, we obtain some sufficient conditions ensuring the global exponential robust stability of the networks. The results in this paper extend the corresponding conclusions without leakage delay. An example is given to illustrate the effectiveness of the obtained results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hong Qiu ◽  
Wenmin Deng ◽  
Mingqi Xiang

AbstractThe aim of this paper is to investigate the optimal harvesting strategies of a stochastic competitive Lotka–Volterra model with S-type distributed time delays and Lévy jumps by using ergodic method. Firstly, the sufficient conditions for extinction and stable in the time average of each species are established under some suitable assumptions. Secondly, under a technical assumption, the stability in distribution of this model is proved. Then the sufficient and necessary criteria for the existence of optimal harvesting policy are established under the condition that all species are persistent. Moreover, the explicit expression of the optimal harvesting effort and the maximum of sustainable yield are given.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


Sign in / Sign up

Export Citation Format

Share Document