A fuzzy mixed-integer robust design optimization model to obtain optimum settings of both qualitative and quantitative input variables under uncertainty

2021 ◽  
pp. 1-16
Author(s):  
Akın Özdemir
Author(s):  
Jae Chang Kim ◽  
Joo-Ho Choi ◽  
Yeong K. Kim

In this paper, comparisons of the design optimization of ball grid array packaging geometry based on the elastic and viscoelastic material properties are made. Six geometric dimensions of the packaging are chosen as input variables. Molding compound and substrate are modeled as elastic and viscoelastic, respectively. Viscoplastic finite element analyses are performed to calculate the strain energy densities (SED) of the eutectic solder balls. Robust design optimizations to minimize SED are carried out, which accounts for the variance of the parameters via Kriging dimension reduction method. Optimum solutions are compared with those by the Taguchi method. It is found that the effects of the packaging geometry on the solder ball reliability are significant, and the optimization results are different depending on the materials modeling.


2019 ◽  
Vol 17 (10) ◽  
pp. 1950079
Author(s):  
Qiong Wang

In the robust design, correlations of uncertain parameters exist widely and have an influence on the results in most cases. It is essential to develop a robust design optimization method considering parametric correlation to future improve the analysis accuracy and engineering applicability. In this paper, a robust design optimization method based on multidimensional parallelepiped convex model is presented. Considering the effects of the interval uncertainties and their correlations, a robust design optimization model considering correlated intervals is established. In the established model, the average performance and robustness of the system response of concern are taken as the design optimization objectives, and the correlations among interval parameters are quantified by integrating the multidimensional parallelepiped convex model. And then, through an independence transforming procedure it can be converted into an independent interval model, which is ultimately converted into a deterministic multi-objective optimization model by using the interval possibility degree to cope with the uncertain constraints. Finally, the deterministic multi-objective optimization model is treated by coupling an efficient micro multi-objective genetic algorithm with the first order Taylor expansion. The feasibility and practicability of the proposed method are demonstrated by the numerical and engineering examples.


Sign in / Sign up

Export Citation Format

Share Document