Palaeoenvironmental reconstruction of Livingston Island, Antarctic Peninsula, in the Early Cretaceous: interpretations from the Walker Bay erratics

2015 ◽  
Vol 39 (4) ◽  
pp. 465-476 ◽  
Author(s):  
Kevin Chen ◽  
Jeffrey D. Stilwell ◽  
Chris Mays
2009 ◽  
Vol 21 (5) ◽  
pp. 501-504 ◽  
Author(s):  
Alberto Luis Cione ◽  
Francisco Medina

AbstractThe oldest record of the hexanchiform sharks from the Southern Hemisphere and the second chondrichthyan report known from Carboniferous to Early Cretaceous beds in Antarctica is given. The material was collected in late Aptian rocks of the Kotick Point Formation outcropping in the western part of James Ross Island, near Antarctic Peninsula. It consists of an isolated tooth assignable to a hexanchiform different from the other described genera. The tooth shows putative plesiomorphic cusp (few cusps, no serrations) and apomorphic root characters (relatively deep, quadrangular). It could be related to a species close to the origin ofHexanchus(unknown in beds older than Cenomanian).


1995 ◽  
Vol 69 (1) ◽  
pp. 66-84 ◽  
Author(s):  
Simon R. A. Kelly

New discoveries of trigonioid bivalves are documented from three areas in the Antartic Peninsula: the Fossil Bluff Group of Alexander Island, the Latady Formation of the Orville Coast, and the Byers Group of Livingston Island, South Shetland Islands. Eleven taxa are described, representing six genera or subgenera. The faunas are characterized by genera including Vaugonia (Vaugonia), the first Early Jurassic trigonioid recognized on the continent; Vaugonia (V.) and V. (Orthotrigonia?) in the Late Jurassic; and Iotrigonia (Iotrigonia), Myophorella (Scaphogonia), and Pterotrigonia (Pterotrigonia), which span the Jurassic–Cretaceous boundary, reaching the Berriasian stage. The following species are new: Pterotrigonia (P.) cramei n. sp., Pterotrigonia (P.) thomsoni n. sp., Vaugonia (V.) orvillensis n. sp., and V. (Orthotrigonia?) quiltyi n. sp. The faunas show affinities with those of New Zealand and southern Africa. Trigonioids characterize the shallower marine biofacies in the Jurassic of the Antarctic and reflect the principal shallowing events in the history of the region.


2004 ◽  
Vol 16 (3) ◽  
pp. 339-344 ◽  
Author(s):  
BRENDA L. HALL ◽  
ETHAN R. PERRY

Raised beach ridges on Livingston Island of the South Shetland Islands display variations in both quantity and source of ice rafted detritus (IRD) received over time. Whereas the modern beach exhibits little IRD, all of which is of local origin, the next highest beach (∼250 14C yr BP) has large amounts, some of which comes from as far away as the Antarctic Peninsula. Significant quantities of IRD also were deposited ∼1750 14C yr BP. Both time periods coincide with generally cooler regional conditions and, at least in the case of the ∼250 yr old beach, local glacial advance. We suggest that the increases in ice rafting may reflect periods of greater glacial activity, altered ocean circulation, and/or greater iceberg preservation during the late Holocene. Limited IRD and lack of far-travelled erratics on the modern beach are both consistent with the ongoing warming trend in the Antarctic Peninsula region.


1989 ◽  
Vol 1 (3) ◽  
pp. 239-248 ◽  
Author(s):  
P.M. Rees ◽  
J.L. Smellie

A terrestrial sequence on Livingston Island, South Shetland Islands, known as the Williams Point Beds contains a well-preserved, diverse fossil flora previously assigned a Triassic age. Because of their supposed age, volcanic provenance and evidence for active volcanism, the Williams Point Beds have occupied a unique position in Gondwana (pre-Jurassic) stratigraphy in the Antarctic Peninsula region. However, a large new collection of plant specimens obtained at Williams Point has yielded several species of angiosperm leaves, which are abundant and occur at all levels within the Williams Point Beds sequence. Thus, a Triassic age is no longer tenable. On the basis of the plants present and published radiometric ages for associated strata, the Williams Point Beds fossil flora is reassigned to the Cretaceous, and there is some evidence for a more restricted Albian–Cenomanian age. This revision of the age of the Williams Point Beds removes all direct evidence for an active Triassic volcanic arc in the Antarctic Peninsula region.


1995 ◽  
Vol 69 (2) ◽  
pp. 264-279 ◽  
Author(s):  
Simon R. A. Kelly

Newly discovered trigonioid bivalves are systematically described from the Late Albian of the Fossil Bluff Group of Alexander Island, Antarctic Peninsula. The fauna includes Nototrigonia (Nototrigonia) ponticula Skwarko, N. (Callitrigonia) offsetensis n. sp., Eselaevitrigonia macdonaldi n. sp., Pterotrigonia (Pisotrigonia) capricornia (Skwarko), and Pacitrigonia praenuntians n. sp. It represents the first Albian trigonioid fauna described from the Antarctic. It is also the first published record of the Nototrigoniinae (excluding Pacitrigonia) outside Australasia. Paleoecologically, this fauna represents the shallowest and highest energy molluscan assemblage from the Fossil Bluff Group and occurs near the base of a significant transgressive unit, the Mars Glacier Member of the Neptune Glacier Formation. The paleogeography of Austral Cretaceous trigonioids is reviewed. Endemic centers are identified in India–east Africa, southern South America, and Australasia. Only one trigonioid genus, Pacitrigonia, had its origin in the Antarctic. During the earliest Cretaceous, cosmopolitan trigonioid genera occurred in Antarctica. In the mid-Cretaceous faunal similarity of Antarctica with Australasia was strong, and in the latest Cretaceous affinity with southern South America increased.


Sign in / Sign up

Export Citation Format

Share Document