2,4-Dichlorophenoxy Acetic Acid Mineralization in Amended Soil

2006 ◽  
Vol 41 (5) ◽  
pp. 509-522 ◽  
Author(s):  
ANNEMIEKE FARENHORST ◽  
MARGUERITE REIMER ◽  
KATHLEEN LONDRY ◽  
IBRAHIM SAIYED
HortScience ◽  
1990 ◽  
Vol 25 (5) ◽  
pp. 569-571 ◽  
Author(s):  
A. Raymond Miller ◽  
Craig K. Chandler

A protocol was developed for excising and culturing cotyledon explants from mature achenes of strawberry (Fragaria × ananassa Duch.). Cotyledon explants formed callus with multiple shoot buds on agar-solidified Murashige and Skoog media containing several combinations of hormones (1 μm 2,4-D; 10 μm 2,4-D; 1 μm BA + 1 μm 2,4-D; 1 μm BA + 10 μm 2,4-D; 5 μm BA; 5 μm BA + 1 μm 2,4-D; 5 μm BA + 10 μ m 2,4-D; 5 μ m BA + 5 μm NAA; 5 μ m BA + 15 μ m NAA). After three subcultures, only tissues maintained on the medium containing 5 μm BA + 5 μm NAA continued to form shoots. Tissues transferred to other media eventually died (1 μm 2,4-D; 1 μ m BA + 10 μ m 2,4-D; 5 μ m BA; 5 μ m BA + 1 μ m 2,4-D), became unorganized (1 μm BA + 1 μm 2,4-D; 5 μm BA + 10 μm 2,4-D; 5 μm BA + 15 μm NAA), or formed roots (10 μm 2,4-D). Whole plantlets were produced by transferring callus with buds to medium lacking hormones. The rapid regeneration of clonal plantlets from cotyledon explants may be useful for reducing variability in future developmental studies. Chemical names used: N-(phenylmethyl)-1H-purin-6-amine (BA); (2,4-dichlorophenoxy) acetic acid (2,4-D); and 1-naphthaleneacetic acid (NAA).


Crop Science ◽  
1986 ◽  
Vol 26 (2) ◽  
pp. 376-377 ◽  
Author(s):  
Cecil Regier ◽  
R. E. Dilbeck ◽  
D. J. Undersander ◽  
J. E. Quisenberry

Weed Science ◽  
1971 ◽  
Vol 19 (6) ◽  
pp. 701-705 ◽  
Author(s):  
R. J. Burr ◽  
G. F. Warren

Several herbicides were tested in the greenhouse on ivyleaf morningglory (Ipomoea hederacea(L.) Jacq.), green foxtail (Setaria viridis(L.) Beauv.), purple nutsedge (Cyperus rotundusL.), and quackgrass (Agropyron repens(L.) Beauv.) to determine the degree of enhancement in activity that could be obtained with an isoparaffinic oil carrier applied at 140 L/ha. The enhancement varied with the herbicide and with the species, ranging from 16-fold enhancement with 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) and 2-sec-butyl-4,6-dinitrophenol (dinoseb) on ivyleaf morningglory to no enhancement of atrazine activity on purple nutsedge and quackgrass or (2,4-dichlorophenoxy)acetic acid (2,4-D) activity on quackgrass and ivyleaf morningglory. An oil adjuvant was less effective in enhancing dinoseb and 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron) activity than was the isoparaffinic oil carrier. Also, the isoparaffinic oil carrier emulsified in water was less effective than the undiluted oil in enhancing dinoseb activity on green foxtail, even though equal volumes of the isoparaffinic oil were applied.


2009 ◽  
Vol 36 (No. 4) ◽  
pp. 140-146 ◽  
Author(s):  
J.K. Kanwar ◽  
S. Kumar

The influence of growth regulators, explants and their interactions on in vitro shoot bud formation from callus was studied in <I>Dianthus caryophyllus</I> L. The leaf and internode explants were cultured on Murashige and Skoog (MS) medium containing different concentrations of growth regulators. The highest callus induction was observed with 2 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D) and 1 mg/l benzyl adenine (BA). Out of twenty seven shoot regeneration media tested, only 2 mg/l thidiazuron (TDZ) and zeatin alone or in combination with naphthalene acetic acid (NAA) and/or indole acetic acid (IAA) could differentiate calli. The highest average number of shoots was observed with 2 mg/l TDZ and 1 mg/l IAA. Significant differences were observed in calli producing shoots and number of shoots per callus in the explants of leaf and internode. The shoots were elongated and multiplied on MS medium supplemented with 1 mg/l BA and solidified with 1% agar. The shoots were rooted and hardened with 76% survival success in pots after six weeks of transfer to the pots.


Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 98-101 ◽  
Author(s):  
John C. Tappeiner ◽  
Steven R. Radosevich

An experiment was established in 1961 to determine the influence of bearmat (Chamaebatia foliolosa Benth.) competition on ponderosa pine (Pinus ponderosa Laws.) survival and growth. Ponderosa pine seedlings were planted in bearmat which was: (A) untreated, (B) sprayed with a mixture of 2,4-D [(2,4-dichlorophenoxy)acetic acid] and 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid], and (C) eliminated by a combination of herbicide, clipping sprouts, and trenching to prevent root and rhizome invasion. Ponderosa pine survival after 19 yr averaged 9%, 66%, and 90%, respectively, for the three treatments. Tree height after 19 yr averaged 1.6, 1.9, and 5.7 m for treatments A, B, and C, respectively. Soil moisture use was initially less on the herbicide-treated than on the untreated plots, but bearmat quickly sprouted after application to compete with the pine seedlings for moisture. After 19 yr the bearmat was more dense and appeared to be more vigorous on the sprayed plots than on those receiving no treatment. We estimate that 75% reduction in net wood production could result after 50 yr on this site from bearmat competition.


Weed Science ◽  
1970 ◽  
Vol 18 (1) ◽  
pp. 64-68 ◽  
Author(s):  
T. D. Taylor ◽  
G. F. Warren

Uptake and movement of various herbicides and auxins by bean (Phaseolus vulgarisL.) petiole sections were studied. Isopropylm-chlorocarbanilate (chlorpropham) was the most mobile of the compunds studied, followed in order of decreasing mobility by: indole-3-acetic acid (IAA), 3-amino-s-triazole (amitrole), (2,4-dichlorophenoxy)acetic acid (2,4-D), 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea (linuron), and 3-amino-2,5-dichlorobenzoic acid (amiben). Amiben immobilization may have been due to glucoside formation in the tissues. IAA was rapidly transported through basipetally but not acropetally oriented tissue. Tissue orientation had little effect on the movement of the other compounds. Mobility of the compounds studied, in general, appears to be a function of the amount of uncomplexed parent chemical. Retention is likely the result of conjugation with products in the cells or of physical binding in the cells.


Sign in / Sign up

Export Citation Format

Share Document