Approximation of stochastic differential equations driven by subfractional Brownian motion at discrete time observation

Author(s):  
Guangjun Shen ◽  
Zheng Tang ◽  
Jun Wang
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi Wang ◽  
Litan Yan

Let SH be a subfractional Brownian motion with index 0<H<1. Based on the 𝒮-transform in white noise analysis we study the stochastic integral with respect to SH, and we also prove a Girsanov theorem and derive an Itô formula. As an application we study the solutions of backward stochastic differential equations driven by SH of the form -dYt=f(t,Yt,Zt)dt-ZtdStH, t∈[0,T],YT=ξ, where the stochastic integral used in the above equation is Pettis integral. We obtain the explicit solutions of this class of equations under suitable assumptions.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 988
Author(s):  
Pengju Duan

The paper is devoted to studying the exponential stability of a mild solution of stochastic differential equations driven by G-Brownian motion with an aperiodically intermittent control. The aperiodically intermittent control is added into the drift coefficients, when intermittent intervals and coefficients satisfy suitable conditions; by use of the G-Lyapunov function, the p-th exponential stability is obtained. Finally, an example is given to illustrate the availability of the obtained results.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oussama El Barrimi ◽  
Youssef Ouknine

Abstract Our aim in this paper is to establish some strong stability results for solutions of stochastic differential equations driven by a Riemann–Liouville multifractional Brownian motion. The latter is defined as a Gaussian non-stationary process with a Hurst parameter as a function of time. The results are obtained assuming that the pathwise uniqueness property holds and using Skorokhod’s selection theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


Sign in / Sign up

Export Citation Format

Share Document