Phase-Type Model Spectrum Sensing for Cognitive Radios

2015 ◽  
Vol 61 (5) ◽  
pp. 510-516
Author(s):  
Mohammadreza Amini ◽  
Asra Mirzavandi
Frequenz ◽  
2015 ◽  
Vol 69 (9-10) ◽  
Author(s):  
Mohammadreza Amini ◽  
Asra Mirzavandi

AbstractSpectrum sensing is one of the main functionalities of cognitive radios to find transmission opportunities without interfering primary users’ transmission. The more accurate and efficient the spectrum sensing is, the higher the throughput of secondary and primary networks is achieved. This paper presents adaptive spectrum sensing method based on phase type modelling that is computationally efficient for secondary users to conclude about the channel state (idle or busy) under collision constraint. The parameters of phase type model can be adjusted based on the desired operating point of the receiver sensor in its ROC curve. The presented approach can run a simple trade off between sensing time and the two error probabilities of the receiver sensor i.e. False alarm and Miss-detection, the trade off that cannot be easily achieved in other sensing method.


Author(s):  
Mohammadreza Amini ◽  
Asra Mirzavandi ◽  
Mosrafa Rezaei

Spectrum sensing is one of the functionalities of cognitive radios to exploit spectrum holes without interrupting primary users transmission. The more efficient of the spectrum sensing, the highest the throughput of secondary and primary network. This paper presents spectrum sensing method based on phase type modelling that is simple to do for secondary users to conclude about the channel state (idle or busy) under collision constraint. The parameters of phase type model can be adjusted based on desired operating point of the receiver sensor in its ROC curve. The presented approach can run a trade off between sensing time and the two error probabilities of sensor false alarm and miss-detection.


Author(s):  
Sener Dikmese ◽  
Kishor Lamichhane ◽  
Markku Renfors

AbstractCognitive radio (CR) technology with dynamic spectrum management capabilities is widely advocated for utilizing effectively the unused spectrum resources. The main idea behind CR technology is to trigger secondary communications to utilize the unused spectral resources. However, CR technology heavily relies on spectrum sensing techniques which are applied to estimate the presence of primary user (PU) signals. This paper firstly focuses on novel analysis filter bank (AFB) and FFT-based cooperative spectrum sensing (CSS) techniques as conceptually and computationally simplified CSS methods based on subband energies to detect the spectral holes in the interesting part of the radio spectrum. To counteract the practical wireless channel effects, collaborative subband-based approaches of PU signal sensing are studied. CSS has the capability to relax the problems of both hidden nodes and fading multipath channels. FFT- and AFB-based receiver side sensing methods are applied for OFDM waveform and filter bank-based multicarrier (FBMC) waveform, respectively, the latter one as a candidate beyond-OFDM/beyond-5G scheme. Subband energies are then applied for enhanced energy detection (ED)-based CSS methods that are proposed in the context of wideband, multimode sensing. Our first case study focuses on sensing potential spectral gaps close to relatively strong primary users, considering also the effects of spectral regrowth due to power amplifier nonlinearities. The study shows that AFB-based CSS with FBMC waveform is able to improve the performance significantly. Our second case study considers a novel maximum–minimum energy detector (Max–Min ED)-based CSS. The proposed method is expected to effectively overcome the issue of noise uncertainty (NU) with remarkably lower implementation complexity compared to the existing methods. The developed algorithm with reduced complexity, enhanced detection performance, and improved reliability is presented as an attractive solution to counteract the practical wireless channel effects under low SNR. Closed-form analytic expressions are derived for the threshold and false alarm and detection probabilities considering frequency selective scenarios under NU. The validity of the novel expressions is justified through comparisons with respective results from computer simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-20
Author(s):  
Bodhisatwa Sadhu ◽  
Martin Sturm ◽  
Brian M. Sadler ◽  
Ramesh Harjani

This paper explores passive switched capacitor based RF receiver front ends for spectrum sensing. Wideband spectrum sensors remain the most challenging block in the software defined radio hardware design. The use of passive switched capacitors provides a very low power signal conditioning front end that enables parallel digitization and software control and cognitive capabilities in the digital domain. In this paper, existing architectures are reviewed followed by a discussion of high speed passive switched capacitor designs. A passive analog FFT front end design is presented as an example analog conditioning circuit. Design methodology, modeling, and optimization techniques are outlined. Measurements are presented demonstrating a 5 GHz broadband front end that consumes only 4 mW power.


Sign in / Sign up

Export Citation Format

Share Document