Comparing single and multi-objective hydrologic model calibration considering reservoir inflow and streamflow observations

Author(s):  
James Bomhof ◽  
Bryan A. Tolson ◽  
Nicholas Kouwen
2021 ◽  
Author(s):  
Lucy Marshall

<div> <p>The latest generation of integrated hydrologic models provides new opportunities to better understand and hypothesize about the connections between hydrological, ecological and energy transfer processes across a range of scales. Parallel to this has been unprecedented growth in new technologies to observe components of Earth’s biophysical system through satellite remote sensing or on-the-ground instruments. However, along with growth in available data and advanced modelling platforms comes a challenge to ensure models are representative of catchment systems and are not unrealistically confident in their predictions. Many hydrologic and ecosystem variables are measured infrequently, measured with significant error, or are measured at a scale different to their representation in a model. In fact, the modelled variable of interest is frequently not directly observed but inferred from surrogate measurements. This introduces errors in model calibration that will affect whether our models are representative of the systems we seek to understand.</p> </div><div> <p>In recent years, Bayesian inference has emerged as a powerful tool in the environmental modeler’s toolbox, providing a convenient framework in which to model parameter and observational uncertainties. The Bayesian approach is ideal for multivariate model calibration, by defining proper prior distributions that can be considered analogous to the weighting often prescribed in traditional multi-objective calibration. </p> </div><div> <p>In this study, we develop a multi-objective Bayesian approach to hydrologic model inference that explicitly capitalises on a priori knowledge of observational errors to improve parameter estimation and uncertainty estimation. We introduce a novel error model, which partitions observation and model residual error according to prior knowledge of the estimated uncertainty in the calibration data. We demonstrate our approach in two case studies: an ecohydrologic model where we make use of the known uncertainty in satellite retrievals of Leaf Area Index (LAI), and a water quality model using turbidity as a proxy for Total Suspended Solids (TSS). Overall, we aim to demonstrate the need to properly account for known observational errors in proper hydrologic model calibration.</p> </div>


2006 ◽  
Vol 10 (2) ◽  
pp. 289-307 ◽  
Author(s):  
Y. Tang ◽  
P. Reed ◽  
T. Wagener

Abstract. This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ε-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ε-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ε-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets and small model evaluation times. In general, it would be expected that MOSCEM-UA's performance would be met or exceeded by either SPEA2 or ε-NSGAII.


2019 ◽  
Vol 573 ◽  
pp. 546-556 ◽  
Author(s):  
Sarah R. Parker ◽  
Stephen K. Adams ◽  
Roderick W. Lammers ◽  
Eric D. Stein ◽  
Brian P. Bledsoe

2020 ◽  
Vol 12 (19) ◽  
pp. 3241
Author(s):  
Cassandra Nickles ◽  
Edward Beighley ◽  
Dongmei Feng

The Surface Water and Ocean Topography (SWOT) satellite mission, expected to launch in 2022, will enable near global river discharge estimation from surface water extents and elevations. However, SWOT’s orbit specifications provide non-uniform space–time sampling. Previous studies have demonstrated that SWOT’s unique spatiotemporal sampling has a minimal impact on derived discharge frequency distributions, baseflow magnitudes, and annual discharge characteristics. In this study, we aim to extend the analysis of SWOT’s added value in the context of hydrologic model calibration. We calibrate a hydrologic model using previously derived synthetic SWOT discharges across 39 gauges in the Ohio River Basin. Three discharge timeseries are used for calibration: daily observations, SWOT temporally sampled, and SWOT temporally sampled including estimated uncertainty. Using 10,000 model iterations to explore predefined parameter ranges, each discharge timeseries results in similar optimal model parameters. We find that the annual mean and peak flow values at each gauge location from the optimal parameter sets derived from each discharge timeseries differ by less than 10% percent on average. Our findings suggest that hydrologic models calibrated using discharges derived from SWOT’s non-uniform space–time sampling are likely to achieve results similar to those based on calibrating with in situ daily observations.


Sign in / Sign up

Export Citation Format

Share Document