A MODIFIED EQUIVALENT CIRCUIT FOR THREE-PHASE INDUCTION MOTORS WITH BALANCED NONSINUSOIDAL VOLTAGE SOURCE

1987 ◽  
Vol 12 (6) ◽  
pp. 397-406 ◽  
Author(s):  
C. S. CHEN ◽  
C. S. MOO ◽  
J. T. SHIE ◽  
H.L. JEN
Author(s):  
Ahmed Thamer Radhi ◽  
Wael Hussein Zayer

The paper deals with faults diagnosis method proposed to detect the inter-turn and turn to earth short circuit in stator winding of three-phase high-speed solid rotor induction motors. This method based on negative sequence current of motor and fuzzy neural network algorithm. On the basis of analysis of 2-D electromagnet field in the solid rotor the rotor impedance has been derived to develop the solid rotor induction motor equivalent circuit. The motor equivalent circuit is simulated by MATLAB software to study and record the data for training and testing the proposed diagnosis method. The numerical results of proposed approach are evaluated using simulation of a three-phase high-speed solid-rotor induction motor of two-pole, 140 Hz. The results of simulation shows that the proposed diagnosis method is fast and efficient for detecting inter-turn and turn to earth faults in stator winding of high-speed solid-rotor induction motors with different faults conditions


Author(s):  
Mervet A Shanab

This paper presents a developed method to calculate the parameters for thirty-three squirrel cage induction motors operating at three-phase ac voltage of 380 volts. These motors are the total product of an Egyptian factory holding a license from SIEMENS international company to fabricate all parts of these motors. The parameters of all mentioned motors are computed based on the proposed method. Then, the performance characteristics of these motors are investigated at full-load using the conventional equivalent circuit in order to validate the proposed method. The obtained curves achieve significant convergence with the full-load values provided by the data sheets of investigated motors. This confirms the validity of the proposed method.


Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 120 ◽  
Author(s):  
Milan Srndovic ◽  
Rastko Fišer ◽  
Gabriele Grandi

The equivalent inductance of three-phase induction motors is experimentally investigated in this paper, with particular reference to the frequency range from 1 kHz to 20 kHz, typical for the switching frequency in inverter-fed electrical drives. The equivalent inductance is a basic parameter when determining the inverter-motor current distortion introduced by switching modulation, such as rms of current ripple, peak-to-peak current ripple amplitude, total harmonic distortion (THD), and synthesis of the optimal PWM strategy to minimize the THD itself. In case of squirrel-cage rotors, the experimental evidence shows that the equivalent inductance cannot be considered constant in the frequency range up to 20 kHz, and it considerably differs from the value measured at 50 Hz. This frequency-dependent behaviour can be justified mainly by the skin effect in rotor bars affecting the rotor leakage inductance in the considered frequency range. Experimental results are presented for a set of squirrel-cage induction motors with different rated power and one wound-rotor motor in order to emphasize the aforesaid phenomenon. The measurements were carried out by a three-phase sinusoidal generator with the maximum operating frequency of 5 kHz and a voltage source inverter operating in the six-step mode with the frequency up to 20 kHz.


Author(s):  
Laura Collazo Solar ◽  
Angel A. Costa Montiel ◽  
Miriam Vilaragut Llanes ◽  
Vladimir Sousa Santos ◽  
Abel Curbelo Colina

This paper proposes a new equivalent circuit for medium voltage and great power induction motors considering the more complete information given by the manufacturer. A methodology for obtaining the parameters of the equivalent circuit is presented, having this circuit the advantage of allowing the electrical calculation of all the power losses and the realization of the power balance. It is an achievement of this work a new way of calculating and representing the additional losses using a resistance located in the rotor circuit. Then, three types of losses are considered as a part of a power balance: the conventional or joule effect variable losses, the constant losses, and the additional losses. The proposed method is straight and non-iterative. It was applied to a case study motor of 6000 V and 2500 kW located at the Maximo Gomez Power Plant in Cuba.


Sign in / Sign up

Export Citation Format

Share Document