scholarly journals Applications on High-Energy X-Rays to Stress Measurements of Thermal Barrier Coatings

2003 ◽  
Vol 35 (3-4) ◽  
pp. 207-217 ◽  
Author(s):  
Kenji Suzuki ◽  
Keisuke Tanaka

High-energy X-rays from a synchrotron radiation source, SPring-8, were applied to the stress measurements of thermal barrier coating (TBC). The specimen had a zirconia top coat on a bond coat of NiCoCrAlY sprayed on the substrate of Ni-base super alloys. The stress in the bond coat was measured through the top coat using the diffraction of Ni3Al 311 by high-energy X-rays with an energy of 72 keV. The sin2ψ method was used to determine the stress value. A specially designed furnace with a wide beryllium window was developed to conduct in-situ measurements of the internal stress in the bond coating at the room temperature, 773, 1073, and 1373 K. The internal stress was tensile at the room temperature, and decreased with increasing temperature. At 1073K or higher, the internal stress in the bond coat was released due to softening of the bond coat. The normal stress perpendicular to the coating surface of TBC was evaluated by a new hybrid method. Since the penetration depth of low-energy X-ray is very small around a few micrometers for zirconia, the stress value measured by the sin2ψ method is the in-plane stress, σ1, and the stress perpendicular to the surface was zero. On the other hand, the penetration depth of high-energy X-rays is very deep, so the measured stress value will be the in-plane stress minus the out-of-plane stress, i.e. σ1−σ3. The normal stress perpendicular to the surface, σ3, i.e. the spalling stress, was estimated from these two measurements. The specimens were exposed in air atmosphere at 1373 K for 500, 1000, and 2000 h. The distribution of the spalling stress in the top coat was estimated by the hybrid method. The spalling stress near the interface to the bond coat changed to a large tension after long-time exposure.

Author(s):  
Kevin Knipe ◽  
Albert C. Manero ◽  
Stephen Sofronsky ◽  
John Okasinski ◽  
Jonathan Almer ◽  
...  

An understanding of the high temperature mechanics experienced in Thermal Barrier Coatings (TBC) during cycling conditions would be highly beneficial to extending the lifespan of the coatings. This study will present results obtained using synchrotron x-rays to measure depth resolved strains in the various layers of TBCs under thermal mechanical loading and a superposed thermal gradient. Tubular specimens, coated with Yttria Stabilized Zirconia (YSZ) and an aluminum containing nickel alloy as a bond coat both through Electron Beam - Physical Vapor Deposition (EBPVD), were subjected to external heating and controlled internal cooling generating a thermal gradient across the specimen’s wall. Temperatures at the external surface were in excess of 1000 °C. Throughout high temperature testing, 2-D high-resolution XRD strain measurements are taken at various locations through the entire depth of the coating layers. Across the YSZ a strain gradient was observed showing higher compressive strain at the interface to the bond coat than towards the surface. This behavior can be attributed to the specific microstructure of the EB-PVD-coating, which reveals higher porosity at the outer surface than at the interface to the bond coat, resulting in a lower in plane modulus near the surface. This location at the interface displays the most significant variation due to applied load at room temperature with this effect diminishing at elevated uniform temperatures. During thermal cycling with a thermal gradient and mechanical loading, the bond coat strain moves from a highly tensile state at room temperature to an initially compressive state at high temperature before relaxing to zero during the high temperature hold. The results of these experiments give insight into previously unseen material behavior at high temperature which can be used to develop an increased understanding of various failure modes and their causes.


2005 ◽  
Vol 490-491 ◽  
pp. 631-636 ◽  
Author(s):  
Kenji Suzuki ◽  
Keisuke Tanaka

The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study ,the TBCs were oxidized at 1373 K for four diferent periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, s1, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, s1− s3, was measured with hard synchrotron X-rays, because high energry X-rays have a large penetration depth. From the results by the low and high energy Xrays, the spalling stress in the oxidized TBCs, s3, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating.


Author(s):  
Kevin Knipe ◽  
Albert C. Manero ◽  
Stephen Sofronsky ◽  
John Okasinski ◽  
Jonathan Almer ◽  
...  

An understanding of the high temperature mechanics experienced in thermal barrier coatings (TBC) during cycling conditions would be highly beneficial to extending the lifespan of the coatings. This study will present results obtained using synchrotron X-rays to measure depth resolved strains in the various layers of TBCs under thermal mechanical loading and a superposed thermal gradient. Tubular specimens, coated with yttria stabilized zirconia (YSZ) and an aluminum containing nickel alloy as a bond coat both through electron beam-physical vapor deposition (EB-PVD), were subjected to external heating and controlled internal cooling generating a thermal gradient across the specimen's wall. Temperatures at the external surface were in excess of 1000 °C. Throughout high temperature testing, 2D high-resolution XRD strain measurements are taken at various locations through the entire depth of the coating layers. Across the YSZ, a strain gradient was observed showing higher compressive strain at the interface to the bond coat than toward the surface. This behavior can be attributed to the specific microstructure of the EB-PVD-coating, which reveals higher porosity at the outer surface than at the interface to the bond coat, resulting in a lower in plane modulus near the surface. This location at the interface displays the most significant variation due to applied load at room temperature with this effect diminishing at elevated uniform temperatures. During thermal cycling with a thermal gradient and mechanical loading, the bond coat strain moves from a highly tensile state at room temperature to an initially compressive state at high temperature before relaxing to zero during the high temperature hold. The results of these experiments give insight into previously unseen material behavior at high temperature, which can be used to develop an increased understanding of various failure modes and their causes.


2007 ◽  
Vol 336-338 ◽  
pp. 1759-1761 ◽  
Author(s):  
Wen Ma ◽  
Yue Ma ◽  
Sheng Kai Gong ◽  
Hui Bin Xu ◽  
Xue Qiang Cao

Lanthanum-cerium oxide (La2Ce2O7, LC) is considered as a new candidate material for thermal barrier coatings (TBCs) because of its low thermal conductivity and high phase stability between room temperature and 1673K. The LC coatings with different La2O3 contents were prepared by air plasma spraying (APS) and their lifetime was evaluated by thermal cyclic testing from room temperature to 1373 K. The structures of the coatings were characterized by XRD and SEM and the deviation of the composition from the powder was determined by EDS analysis. Long time annealing for the freestanding coating at 1673K reveals that the near stoichiometric LC coating is stable up to 240h, and the stability decreases with increasing the deviation from stoichiometric LC composition. During thermal cyclic testing, spallation was observed within the top coat near the bond coat. It is considered that the effect of intrinsic stress caused by the coefficient of thermal expansion (CTE) mismatch between top coat and bond coat is larger than that of thermally grown oxide (TGO) and the bond adherence of top coat with TGO.


2010 ◽  
Vol 638-642 ◽  
pp. 906-911 ◽  
Author(s):  
Kenji Suzuki ◽  
Takahisa Shobu

As the top coating, zirconia with 4 mol% yttria was electron beam-physical vapor deposited (EB-PVD) on the bond coating of CoNiCrAlY. The substrates were rotated during EB-PVD process and the rotation speeds were 5 (R5) and 10 rpm (R10). The thickness of the top coating was 0.12 mm. In order to investigate the change of the internal stress in the top coating under a heat cycle, the specimen was heated from a room temperature to 1293K, the internal stress was measured in-situ by a strain scanning method with hard synchrotron X-rays at each temperature step. For the specimen R5, the internal stress increased from about -100 MPa to about 100 MPa with the increase in temperature, then the stress relaxation of the top coating occurred over 1093K. In the cooling process, the internal stress decreased, however, the changing rate of the internal stress was small as compared with the heating process. This was caused by the feather-like structure sintered. For the specimen R10, the internal stress did not show a tension in the heating process, it was caused by the separation between columnar structures.


2004 ◽  
Vol 70 (693) ◽  
pp. 724-730 ◽  
Author(s):  
Kenji SUZUKI ◽  
Keisuke TANAKA ◽  
Yoshiaki AKINIWA ◽  
Masashi KAWAMURA ◽  
Koji NISHIO ◽  
...  

2004 ◽  
Vol 87 (2) ◽  
pp. 268-274 ◽  
Author(s):  
Anand A. Kulkarni ◽  
Herbert Herman ◽  
Jon Almer ◽  
Ulrich Lienert ◽  
Dean Haeffner ◽  
...  

2009 ◽  
Vol 24 (S1) ◽  
pp. S37-S40 ◽  
Author(s):  
Yoshiaki Akiniwa ◽  
Hidehiko Kimura ◽  
Takeo Sasaki

The compressive stress distribution below the specimen surface of severely surface deformed steels by shot peening was investigated by using laboratory X-rays and high-energy X-rays from a synchrotron radiation source, SPring-8 in the Japan Synchrotron Radiation Research Institute. Medium carbon steel plates were heat treated in two different conditions. The Vickers hardness of materials A and B after heat treatment is 408 and 617 HV, respectively. The specimens were shot peened with fine cast iron particles of the size of 50 μm. The coverage was selected to be 5000%. For the synchrotron radiation, by using the monochromatic X-ray beam with several energy levels, the stress values at the arbitrary penetration depth were measured by the constant penetration depth method. The shot-peened specimens were fatigued under four-point bending. The improvement of fatigue strength of material A was not so large because of large surface roughness. On the other hand, for material B, the surface roughness was smaller and the fatigue strength was higher than that of ground specimens.


Sign in / Sign up

Export Citation Format

Share Document