Significance of phenolic compounds in plant‐soil‐microbial systems

1991 ◽  
Vol 10 (1) ◽  
pp. 63-121 ◽  
Author(s):  
José O. Siqueira ◽  
Muraleedharan G. Nair ◽  
Raymond Hammerschmidt ◽  
Gene R. Safir ◽  
Alan R. Putnam
2021 ◽  
Vol 408 ◽  
pp. 124939
Author(s):  
A. Vera ◽  
J.L. Moreno ◽  
J.A. Siles ◽  
R. López-Mondejar ◽  
Y. Zhou ◽  
...  

2021 ◽  
Vol 52 (2) ◽  
pp. 239-250
Author(s):  
X.J. He ◽  
W.W. Zhu ◽  
F.Z. Wu

We studied the effects of 7-crop rotations and continuous - monocropping systems on soil microorganism and its feedback. The results showed that absolute abundance of soil bacteria (Pseudomonas and Bacillus) in tomato - celery - cucumber - cabbage and cucumber - tomato - cucumber - cabbage rotation were significantly higher than control (CK). Absolute abundance of soil fungi in tomato - celery - cucumber - cabbage, kidney bean - celery - cucumber - cabbage, cucumber - kidney bean - cucumber - cabbage and cucumber - tomato - cucumber - cabbage rotation were significantly higher than CK. Dry weight of cucumber seedlings was significantly positively correlated with bacterial (Pseudomonas and Bacillus) abundance, and negatively correlated with fungal count. The results of inoculation with Fusarium oxysporum f.sp. cucumerinum showed that plant dry weight of cucumber seedlings in tomato - celery - cucumber - cabbage, cucumber - kidney bean - cucumber - cabbage, cucumber - tomato - cucumber - cabbage rotation soil was significantly higher than other treatments, and their disease index was significantly lower than other treatments. There was no significant difference in dry weight of cucumber seedlings in rotation and CK in the soil sterilization test. The results of plant - soil feedback experiment showed that soil microbial changes caused by different rotation patterns had a positive feedback effect on growth of cucumber seedlings.


Ecology ◽  
2001 ◽  
Vol 82 (4) ◽  
pp. 965-978 ◽  
Author(s):  
Patrick J. Bohlen ◽  
Peter M. Groffman ◽  
Charles T. Driscoll ◽  
Timothy J. Fahey ◽  
Thomas G. Siccama

2017 ◽  
Vol 54 (4) ◽  
pp. 1028-1039 ◽  
Author(s):  
Jonathan T. Bauer ◽  
Noah Blumenthal ◽  
Anna J. Miller ◽  
Julia K. Ferguson ◽  
Heather L. Reynolds

2021 ◽  
Author(s):  
Sean Lee ◽  
Thomas J. Mozdzer ◽  
Samantha K. Chapman ◽  
M. Gonzalez Mateu ◽  
A. H. Baldwin ◽  
...  

Plants can cultivate soil microbial communities that affect subsequent plant growth through a plant-soil feedback (PSF).  Strong evidence indicates that PSFs can mediate the invasive success of exotic upland plants, but many of the most invasive plants occur in wetlands.  In North America, the rapid spread of European Phragmites australis cannot be attributed to innate physiological advantages, thus PSFs may mediate invasion. Here we apply a two-phase fully-factorial plant-soil feedback design in which field-derived soil inocula were conditioned using saltmarsh plants and then were added to sterile soil mesocosms and planted with each plant type.  This design allowed us to assess complete soil biota effects on intraspecific PSFs between native and introduced P. australis as well as heterospecific feedbacks between P. australis and the native wetland grass, Spartina patens. Our results demonstrate that native P. australis experienced negative conspecific feedbacks while introduced P. australis experienced neutral conspecific feedbacks.  Interestingly, S. patens soil inocula inhibited growth in both lineages of P. australis while introduced and native P. australis inocula promoted the growth of S. patens suggestive of biotic resistance against P. australis invasion by S. patens . Our findings suggest that PSFs are not directly promoting the invasion of introduced P. australis in North America. Furthermore, native plants like S. patens seem to exhibit soil microbe mediated biotic resistance to invasion which highlights the importance of disturbance in mediating introduced P. australis invasion.


2020 ◽  
Vol 6 (33) ◽  
pp. eabc1176 ◽  
Author(s):  
Evgenios Agathokleous ◽  
Zhaozhong Feng ◽  
Elina Oksanen ◽  
Pierre Sicard ◽  
Qi Wang ◽  
...  

Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gesche Blume-Werry ◽  
Eveline J. Krab ◽  
Johan Olofsson ◽  
Maja K. Sundqvist ◽  
Maria Väisänen ◽  
...  

AbstractArctic plant growth is predominantly nitrogen (N) limited. This limitation is generally attributed to slow soil microbial processes due to low temperatures. Here, we show that arctic plant-soil N cycling is also substantially constrained by the lack of larger detritivores (earthworms) able to mineralize and physically translocate litter and soil organic matter. These new functions provided by earthworms increased shrub and grass N concentration in our common garden experiment. Earthworm activity also increased either the height or number of floral shoots, while enhancing fine root production and vegetation greenness in heath and meadow communities to a level that exceeded the inherent differences between these two common arctic plant communities. Moreover, these worming effects on plant N and greening exceeded reported effects of warming, herbivory and nutrient addition, suggesting that human spreading of earthworms may lead to substantial changes in the structure and function of arctic ecosystems.


2015 ◽  
Vol 69 (4) ◽  
pp. 798-812 ◽  
Author(s):  
Dulce Flores-Rentería ◽  
Jorge Curiel Yuste ◽  
Ana Rincón ◽  
Francis Q. Brearley ◽  
Juan Carlos García-Gil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document