scholarly journals Effects of between-site variation in soil microbial communities and plant-soil feedbacks on the productivity and composition of plant communities

2017 ◽  
Vol 54 (4) ◽  
pp. 1028-1039 ◽  
Author(s):  
Jonathan T. Bauer ◽  
Noah Blumenthal ◽  
Anna J. Miller ◽  
Julia K. Ferguson ◽  
Heather L. Reynolds
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Darine Trabelsi ◽  
Ridha Mhamdi

The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1128C-1128
Author(s):  
Shengrui Yao ◽  
Ian A. Merwin ◽  
Janice E. Thies

Apple (Malu ×domestica) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards in old fruit-growing sites. Methyl bromide (MB) has been an effective soil fumigant to control ARD, but safer alternatives to MB are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five clonal rootstocks (M7, M26, CG6210, CG30, and G16), in an apple replant site at Ithaca, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in hierarchical cluster analyses. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and oomycetes communities in root-zone soil.


2021 ◽  
Author(s):  
Luoshu He ◽  
Suhui Ma ◽  
Jiangling Zhu ◽  
Xinyu Xiong ◽  
Yangang Li ◽  
...  

Abstract Purpose The local microclimate of different slope aspects in the same area can not only impact soil environment and plant community but also affect soil microbial community. However, the relationship between aboveground plant communities and belowground soil microbial communities on various slope aspects has not been well understood.Methods We investigated the above- and belowground relationship on different slope aspects and explored how soil properties influence this relationship. Plant community attributes were evaluated by plant species richness and plant total basal area. Soil microbial community was assessed based on both 16S rRNA and ITS rRNA, using High-throughput Illumina sequencing. Results There was no significant correlation between plant richness and soil bacterial community composition on the north slope, but there was a positive correlation on the south slope and a significantly negative correlation on the flat site. There was a significantly negative correlation between soil fungal community composition and plant total basal area, which did not change with the slope aspect. In addition, there was no significant correlation between plant community species richness and soil microbial species richness.Conclusions In subalpine coniferous forests, the relationship between plant-soil bacteria varies with slope aspect, but the plant-soil fungi relationship is relatively consistent across different slope aspects. These results can improve our understanding of the relationship between plant and soil microorganisms in forest ecosystems under microtopographic changes and have important implications for the conservation of biodiversity and forest management in subalpine coniferous forests.


2021 ◽  
Author(s):  
Micaela Tosi ◽  
John Drummelsmith ◽  
Dasiel Obregón ◽  
Inderjot Chahal ◽  
Laura L. Van Eerd ◽  
...  

Abstract Sustainable agricultural practices such as crop diversification, cover crops and residue retention are increasingly applied to counteract detrimental effects of agriculture on natural resources. Since part of their effects occur via changes soil microbial communities, it is critical to understand how these respond to different practices. Our study analyzed five cover crop (cc) treatments (oat, rye, radish, rye-radish mixture and no-cc control) and two crop residue management strategies (retention/R+ or removal/R-) in an 8-year diverse horticultural crop rotation trial from ON, Canada. Cc effects were small but stronger than those of residue management. Radish-based cover crops tended to be the most beneficial for both microbial abundance and richness, yet detrimental for fungal evenness. Cc species, in particular radish, also shaped fungal and, to a lesser extent, prokaryotic community composition. Crop residues modulated cc effects on bacterial abundance and fungal evenness (i.e., more sensitive in R- than R+), as well as microbial taxa. Several microbial structure features, some affected by cc, were correlated with early tomato growth in the following spring (e.g., composition, taxa within Actinobacteria, Firmicutes and Ascomycota). Our study suggests that, whereas mid-term cc effects were small, they need to be better understood as they could be influencing crop productivity via plant-soil feedbacks.


Ecology ◽  
2016 ◽  
Vol 97 (12) ◽  
pp. 3346-3358 ◽  
Author(s):  
Jessica L. Rigg ◽  
Cathy A. Offord ◽  
Brajesh K. Singh ◽  
Ian Anderson ◽  
Steve Clarke ◽  
...  

2020 ◽  
Author(s):  
Somak Chowdhury ◽  
Markus Lange ◽  
Ashish A Malik ◽  
Timothy Goodall ◽  
Jianbei Huang ◽  
...  

AbstractInteractions between plants and microorganisms strongly affect ecosystem functioning as processes of plant productivity, litter decomposition and nutrient cycling are controlled by both organisms. Though two-sided interactions between plants and microorganisms and between microorganisms and litter decomposition are areas of major scientific research, our understanding of the three-sided interactions of plant-derived carbon flow into the soil microbial community and their follow-on effects on ecosystem processes like litter decomposition and plant nutrient uptake remains limited. Therefore, we performed a greenhouse experiment with two plant communities differing in their ability to associate with arbuscular mycorrhizal fungi (AMF). By applying a 13CO2 pulse label to the plant communities and adding various 15N labelled substrate types to ingrowth cores, we simultaneously traced the flow of plant-derived carbon into soil microbial communities and the return of mineralized nitrogen back to the plant communities. We observed that net 13C assimilation by the rhizosphere microbial communities and their community composition not only depended on plant-AMF association but also type of substrate being decomposed. AMF-association resulted in lower net 13C investment into the decomposer community than absence of the association for similar 15N uptake. This effect was driven by a reduced carbon flow to fungal and bacterial saprotrophs and a simultaneous increase of carbon flow to AMF. Additionally, in presence of AMF association CN flux also depended on the type of substrate being decomposed. Lower net 13C assimilation was observed for decomposition of plant-derived and microorganism-derived substrates whereas opposite was true for inorganic nitrogen. Interestingly, the decomposer communities assembled in the rhizosphere were structured by both the plant community and substrate amendments which suggests existence of functional overlap between the two soil contexts. Moreover, we present preliminary evidence that AMF association helps plants access nutrients that are locked in bacterial and plant necromass at a lower carbon cost. Therefore, we conclude that a better understanding of ecosystem processes like decomposition can only be achieved when the whole plant-microorganism-litter context is investigated.


2020 ◽  
Vol 14 (6) ◽  
pp. 1396-1409 ◽  
Author(s):  
Catherine Fahey ◽  
Akihiro Koyama ◽  
Pedro M. Antunes ◽  
Kari Dunfield ◽  
S. Luke Flory

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Emma J. Sayer ◽  
John A. Crawford ◽  
James Edgerley ◽  
Andrew P. Askew ◽  
Christoph Z. Hahn ◽  
...  

AbstractDrought imposes stress on plants and associated soil microbes, inducing coordinated adaptive responses, which can involve plant–soil signalling via phytohormones. However, we know little about how microbial communities respond to phytohormones, or how these responses are shaped by chronic (long-term) drought. Here, we added three phytohormones (abscisic acid, 1-aminocyclopropane-1-carboxylic acid, and jasmonic acid) to soils from long-term (25-year), field-based climate treatments to test the hypothesis that chronic drought alters soil microbial community responses to plant stress signalling. Phytohormone addition increased soil respiration, but this effect was stronger in irrigated than in droughted soils and increased soil respiration at low phytohormone concentrations could not be explained by their use as substrate. Thus, we show that drought adaptation within soil microbial communities modifies their responses to phytohormone inputs. Furthermore, distinct phytohormone-induced shifts in microbial functional groups in droughted vs. irrigated soils might suggest that drought-adapted soil microorganisms perceive phytohormones as stress-signals, allowing them to anticipate impending drought.


Sign in / Sign up

Export Citation Format

Share Document